3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x+1}-1,x≤0}\\{|lg\frac{1}{x}|,x>0}\end{array}\right.$,若g(x)=f(x)-a有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍為(1,+∞)∪{0}.

分析 作出f(x)的函數(shù)圖象,根據(jù)函數(shù)圖象判斷a的范圍.

解答 解:作出f(x)的函數(shù)圖象如圖所示:

由圖象可知當(dāng)-1<a<0時(shí),g(x)=f(x)-a有1個(gè)零點(diǎn),
當(dāng)0<a≤1時(shí),g(x)=f(x)-a有3個(gè)零點(diǎn),
當(dāng)a>1或a=0時(shí),g(x)=f(x)-a有2個(gè)零點(diǎn).
故答案為:(1,+∞)∪{0}.

點(diǎn)評(píng) 本題考查了函數(shù)零點(diǎn)與函數(shù)圖象的關(guān)系,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知復(fù)數(shù)z=(m-1)+(m2+2m-3)i,m≥0,
(Ⅰ)若z是純虛數(shù),求m的值;
(Ⅱ)若z+$\overline{z}$=2,求z;
( III)在復(fù)平面中,設(shè)復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)為P,當(dāng)m變化時(shí),求動(dòng)點(diǎn)P的軌跡的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,右頂點(diǎn)為A(2,0).
(1).求橢圓C的方程;
(2).過點(diǎn)P(0,2)的直線l交橢圓于M、N兩點(diǎn),以線段M、N為直徑的圓恰好過原點(diǎn),求出直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若(2x-1)2017=a0+a1x+a2x2+…+a2017x2017,則a0+a1+2a2+…+2017a2017=4033.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=sin(x+$\frac{kπ}{2}$),x∈[$\frac{kπ}{2}$,$\frac{(k+1)π}{2}$],k∈Z,①函數(shù)f(x)的最小正周期為2π;②函數(shù)f(x)值域?yàn)閇-1,1];③函數(shù)f(x)為奇函數(shù);④函數(shù)f(x)與y=$\frac{x}{10}$有7個(gè)交點(diǎn).其中正確的序號(hào)是②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知向量$\overrightarrow{a}$=(4,5cosα),$\overrightarrow$=(3,-4tanα).
(1)若$\overrightarrow{a}$∥$\overrightarrow$,求sinα的值;
(2)若$\overrightarrow{a}$⊥$\overrightarrow$,且α為銳角,求cos(2α-$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知數(shù)列{an}滿足$\frac{a_1}{2}•\frac{a_2}{5}•\frac{a_3}{8}…\frac{a_n}{3n-1}=3n+2(n∈{N^*})$,Sn為{an}的前n項(xiàng)和,則S10=(  )
A.210B.180C.185D.190

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.秦九韶是我國(guó)南宋時(shí)期的數(shù)學(xué)家,他在所著的《數(shù)書九章》中提出的多項(xiàng)式求值的秦九韶算法,至今仍是比較先進(jìn)的算法.如圖所示的程序框圖給出了利用秦九韶算法求某多項(xiàng)式值的一個(gè)實(shí)例,若輸入n,x的值分別為3,3,則輸出v的值為( 。
A.16B.18C.48D.143

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)和圓x2+y2=($\frac{2}$+c)2,(c為橢圓的半焦距),有四個(gè)不同的交點(diǎn),則橢圓的離心率e的取值范圍是( 。
A.($\frac{\sqrt{2}}{5}$,$\frac{3}{5}$)B.($\frac{\sqrt{2}}{5}$,$\frac{\sqrt{5}}{5}$)C.($\frac{\sqrt{5}}{5}$,$\frac{3}{5}$)D.(0,$\frac{\sqrt{5}}{5}$)

查看答案和解析>>

同步練習(xí)冊(cè)答案