【題目】已知復(fù)數(shù)z=a2-a-6+i,分別求出滿足下列條件的實數(shù)a的值:
(1)z是實數(shù);
(2)z是虛數(shù);
(3)z是0.
【答案】(1)a=-5或a=3;(2)a≠-5且a≠3且a≠±2;(3)a=3
【解析】
(1)根據(jù)題意a2+2a-15=0且a2-4≠0,解得答案.
(2)根據(jù)題意a2+2a-15≠0且a2-4≠0,解得答案.
(3)根據(jù)題意由a2-a-6=0且a2+2a-15=0,且a2-4≠0,解得答案.
由a2-a-6=0,解得a=-2或a=3.
由a2+2a-15=0,解得a=-5或a=3.
由a2-4≠0,解得a≠±2.
(1)由a2+2a-15=0且a2-4≠0,得a=-5或a=3,
∴當(dāng)a=-5或a=3時,z為實數(shù).
(2)由a2+2a-15≠0且a2-4≠0,得a≠-5且a≠3且a≠±2,
∴當(dāng)a≠-5且a≠3且a≠±2時,z是虛數(shù).
(3)由a2-a-6=0且a2+2a-15=0,且a2-4≠0,得a=3,∴當(dāng)a=3時,z=0.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓與的中心在坐標(biāo)原點,長軸均為且在軸上,短軸長分別為,,過原點且不與軸重合的直線與,的四個交點按縱坐標(biāo)從大到小依次為,記,和的面積分別為和.
(1)當(dāng)直線與軸重合時,若,求的值;
(2)當(dāng)變化時,是否存在與坐標(biāo)軸不重合的直線,使得?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的函數(shù),單調(diào)遞增,,若對任意,存在,使得成立,則稱是在上的“追逐函數(shù)”.若,則下列四個命題:①是在上的“追逐函數(shù)”;②若是在上的“追逐函數(shù)”,則;③是在上的“追逐函數(shù)”;④當(dāng)時,存在,使得是在上的“追逐函數(shù)”.其中正確命題的個數(shù)為( )
A. ①③B. ②④C. ①④D. ②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層。某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元。該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系:C(x)=若不建隔熱層,每年能源消耗費用為8萬元。設(shè)f(x)為隔熱層建造費用與20年的能源消耗費用之和。
(Ⅰ)求k的值及f(x)的表達式。
(Ⅱ)隔熱層修建多厚時,總費用f(x)達到最小,并求最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班主任利用周末時間對該班級年最后一次月考的語文作文分?jǐn)?shù)進行統(tǒng)計,發(fā)現(xiàn)分?jǐn)?shù)都位于之間,現(xiàn)將所有分?jǐn)?shù)情況分為、、、、、、共七組,其頻率分布直方圖如圖所示,已知.
(1)求頻率分布直方圖中、的值;
(2)求該班級這次月考語文作文分?jǐn)?shù)的平均數(shù)和中位數(shù).(每組數(shù)據(jù)用該組區(qū)間中點值作為代表)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某小區(qū)隨機抽取40個家庭,收集了這40個家庭去年的月均用水量(單位:噸)的數(shù)據(jù),整理得到頻數(shù)分布表和頻率分布直方圖.
(1)求頻率分布直方圖中的值;
(2)從該小區(qū)隨機選取一個家庭,試估計這個家庭去年的月均用水量不低于6噸的概率;
(3)在這40個家庭中,用分層抽樣的方法從月均用水量不低于6噸的家庭里抽取一個容量為7的樣本,將該樣本看成一個總體,從中任意選取2個家庭,求其中恰有一個家庭的月均用水量不低于8噸的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表是年我國就業(yè)人口及勞動年齡人口(勞動年齡人口包含就業(yè)人口)統(tǒng)計表:
時間(年) | |||||||
就業(yè)人口(萬人) | |||||||
勞動年齡人口(萬人) |
則由表可知( )
A.年我國就業(yè)人口逐年減少
B.年我國勞動年齡人口逐年增加
C.年這年我國就業(yè)人口數(shù)量的中位數(shù)為
D.年我國勞動年齡人口中就業(yè)人口所占比重逐年增加
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且過點.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)點P是橢圓上異于短軸端點A,B的任意一點,過點P作軸于Q,線段PQ的中點為M.直線AM與直線交于點N,D為線段BN的中點,設(shè)O為坐標(biāo)原點,試判斷以OD為直徑的圓與點M的位置關(guān)系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com