3.已知集合A={x|x2+x-2<0},B={x|$\frac{1}{4}$<2x<4,x∈Z},則A∩B=( 。
A.{x|-1≤x<1}B.{-1,0,1}C.{-1,0}D.{0,1}

分析 分別求出A與B中不等式的解集確定出A與B,找出兩集合的交集即可.

解答 解:由A中不等式變形得:(x-1)(x+2)<0,
解得:-2<x<1,即A={x|-2<x<1},
由B中不等式變形得:2-2=$\frac{1}{4}$<2x<4=22,x∈Z,
解得:-2<x<2,x∈Z,即B={-1,0,1},
則A∩B={-1,0},
故選:C.

點評 此題考查了交集及其運算,熟練掌握交集的定義是解本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

13.2014年3月8日,馬航MH370航班客機從吉隆坡飛往北京途中失聯(lián),隨后多國加入搜救行動,同時啟動水下黑匣子的搜尋,主要通過水下機器人和蛙人等手段搜尋黑匣子,現(xiàn)有3個水下機器人A,B,C和2個蛙人a,b,各安排一次搜尋任務,搜尋時每次只能安排1個水下機器人或1個蛙人下水,其中C不能安排在第一個下水,A和a必須相鄰安排,則不同的搜尋方式有( 。
A.24種B.36種C.48種D.60種

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.若函數(shù)f(x)=4sin5ax-4$\sqrt{3}$cos5ax的圖象的相鄰兩條對稱軸之間的距離為$\frac{π}{3}$,則實數(shù)a的值為±$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.2016年全國“兩會”于3月3日-3月16日在北京召開,參會代表積極參政議政,議大事謀良策,取得了一系列重要成果,某網(wǎng)站就網(wǎng)友對會議的了解情況隨機調(diào)查了1000名網(wǎng)友,結果如表:
 不很了解  了解非常了解 
50歲以上  100 212 y
 50歲以下 x188  z
若從這1000名網(wǎng)友中隨機抽取一名,抽到50名以下不很了解的概率為0.10.
(1)求x的值;
(2)若y≥193,z≥193,求“非常了解的網(wǎng)友中,50歲以下的人數(shù)不少于50歲以上的人數(shù)”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.設平面向量$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$均為非零向量,則“$\overrightarrow a$•($\overrightarrow b$-$\overrightarrow c$)=0”是“$\overrightarrow b$=$\overrightarrow c$”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件按

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知F1、F2為雙曲線C:$\frac{x^2}{16}$-$\frac{y^2}{9}$=1的左、右焦點,點P在C上,且∠F1PF2=$\frac{π}{3}$,則$\overrightarrow{P{F_1}}$•$\overrightarrow{P{F_2}}$=( 。
A.6B.9C.12D.18

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知等差數(shù)列{an}的前n項和為Sn,等比數(shù)列{bn}的前n項和為Tn,滿足a1=b1,2a2=b2,S2+T2=13,2S3=b3
(Ⅰ)求數(shù)列{an}、{bn}通項公式;
(Ⅱ)設cn=$\frac{{2{a_n}}}{b_n}$,求數(shù)列{cn}的前n項和為Cn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.下列四種說法正確的是(  )
①函數(shù)f(x)的定義域是R,則“?x∈R,f(x+1)>f(x)”是“函數(shù)f(x)為增函數(shù)”的充要條件
②命題“?x∈R,($\frac{1}{3}$)x>0”的否定是“?x∈R,($\frac{1}{3}$)x≤0”
③命題“若x=2,則x2-3x+2=0”的逆否命題是“若x2-3x+2≠0,則x≠2”
④p:在△ABC中,若cos2A=cos2B,則A=B;q:y=sinx在第一象限是增函數(shù).則p∧q為真命題.
A.①②③④B.①③C.①③④D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.近年來我國電子商務行業(yè)迎來篷布發(fā)展的新機遇,2015年雙11期間,某購物平臺的銷售業(yè)績高達918億人民幣.與此同時,相關管理部門推出了針對電商的商品和服務的評價體系.現(xiàn)從評價系統(tǒng)中選出200次成功交易,并對其評價進行統(tǒng)計,對商品的好評率為0.6,對服務的好評率為0.75,其中對商品和服務都做出好評的交易為80次.
(1)是否可以在犯錯誤概率不超過0.1%的前提下,認為商品好評與服務好評有關?
(2)若將頻率視為概率,某人在該購物平臺上進行的5次購物中,設對商品和服務全好評的次數(shù)為隨機變量X:
①求對商品和服務全好評的次數(shù)X的分布列(概率用組合數(shù)算式表示);
②求X的數(shù)學期望和方差.
P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
 k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

同步練習冊答案