19.已知數(shù)列{an}的前n項和為Sn=n2,n∈N+
(1)證明:數(shù)列{an}是等差數(shù)列;
(2)設bn=2${\;}^{{a}_{n}}$,求數(shù)列{bn}的前n項和.

分析 (1)由數(shù)列的前n項和求出通項,然后利用定義證明數(shù)列{an}是等差數(shù)列;
(2)把(1)中的通項公式代入bn=2${\;}^{{a}_{n}}$,可得數(shù)列{bn}是等比數(shù)列,并求出首項和公比,則其前n項和可求.

解答 (1)證明:當n=1時,a1=S1=1;
當n≥2時,${a}_{n}={S}_{n}-{S}_{n-1}={n}^{2}-(n-1)^{2}=2n-1$,
當n=1時上式成立,
∴an=2n-1,
此時an+1-an=2(n+1)-1-2n+1=2.
∴數(shù)列{an}是等差數(shù)列;
(2)解:an=2n-1,bn=2${\;}^{{a}_{n}}$=22n-1,
∴數(shù)列{bn}是以b1=2為首項,公比q=4的等比數(shù)列.
∴數(shù)列{bn}的前n項和${T}_{n}=\frac{2(1-{4}^{n})}{1-4}=\frac{2}{3}•{4}^{n}-\frac{2}{3}$.

點評 本題考查等差數(shù)列、等比數(shù)列的前n項和,是基礎的計算題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

5.在△ABC中,三內(nèi)角A,B,C滿足2B=A+C,求解:tan$\frac{A}{2}$+tan$\frac{B}{2}$+tan$\frac{C}{2}$+$\sqrt{3}$tan$\frac{A}{2}$tan$\frac{C}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖所示,在四棱錐P-ABCD中,△PAB為等邊三角形,AD⊥AB,AD∥BC,平面PAB⊥平面ABCD,E為PD的中點,F(xiàn)為PA中點.
(1)證明:PA⊥平面BEF;
(2)若AD=2BC=2AB=4,求點D到平面PAC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知函數(shù)f(x)=Asin(ωx+φ)(ω>0,0<φ<π)的一段圖象如圖所示,則過點P(ω,φ),且斜率為A的直線方程是( 。
A.y-$\frac{π}{3}$=$\sqrt{3}$(x-2)B.y-$\frac{2π}{3}$=$\sqrt{3}$(x-4)C.y-$\frac{2π}{3}$=2(x-4)D.y-$\frac{2π}{3}$=2(x-2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.在長方形ABCD中,AE=EB,三角形BEF的面積占長方形ABCD面積的$\frac{3}{16}$,那么BF:FC=3:1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.若函數(shù)y=(a2-3a+3)ax是指數(shù)函數(shù),則函數(shù)y=bx+2-a必過定點(  )
A.(0,1)B.(-2,-1)C.(0,-2)D.(-2,-2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.對于任意的n∈N*,若數(shù)列{an}同時滿足下列兩個條件,則稱數(shù)列{an}具有“性質(zhì)m”:
①$\frac{{{a_n}+{a_{n+2}}}}{2}<{a_{n+1}}$;          
②存在實數(shù)M,使得an≤M成立.
(1)數(shù)列{an}、{bn}中,an=n(n∈N*)、${b_n}=1-\frac{1}{n^2}$(n∈N*),判斷{an}、{bn}是否具有“性質(zhì)m”;
(2)若各項為正數(shù)的等比數(shù)列{cn}的前n項和為Sn,且${c_3}=\frac{1}{4}$,${S_3}=\frac{7}{4}$,證明:數(shù)列{Sn}具有“性質(zhì)m”,并指出M的取值范圍;
(3)若數(shù)列{dn}的通項公式${d_n}=\frac{{t\;(3•{2^n}-n)+1}}{2^n}$(n∈N*).對于任意的n≥3(n∈N*),數(shù)列{dn}具有“性質(zhì)m”,且對滿足條件的M的最小值M0=9,求整數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.在△ABC中,角A,B,C所對的邊分別是a,b,c,若$20a•\overrightarrow{BC}+15b•\overrightarrow{CA}+12c•\overrightarrow{AB}=\vec 0$,則△ABC的最小角等于$arccos\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.函數(shù)f(x)=ax3-3x2+1,若f(x)=0存在唯一正實數(shù)根x0,則a取值范圍是(-∞,-2).

查看答案和解析>>

同步練習冊答案