分析 由2B=A+C,及三角形內(nèi)角和定理可解得B=60°,利用兩角和的正切函數(shù)公式及特殊角的三角函數(shù)值化簡即可求值得解.
解答 解:∵2B=A+C,又A+B+C=180°,
∴3B=180°,解得:B=60°,
∴tan$\frac{A}{2}$+tan$\frac{B}{2}$+tan$\frac{C}{2}$+$\sqrt{3}$tan$\frac{A}{2}$tan$\frac{C}{2}$
=tan$\frac{B}{2}$+tan$\frac{A+C}{2}$(1-tan$\frac{A}{2}$*tan$\frac{C}{2}$)+$\sqrt{3}$tan$\frac{A}{2}$tan$\frac{C}{2}$
=tan$\frac{B}{2}$+tanB(1-tan$\frac{A}{2}$*tan$\frac{C}{2}$)+$\sqrt{3}$tan$\frac{A}{2}$tan$\frac{C}{2}$
=$\frac{\sqrt{3}}{3}$+$\sqrt{3}$(1-tan$\frac{A}{2}$*tan$\frac{C}{2}$)+$\sqrt{3}$tan$\frac{A}{2}$tan$\frac{C}{2}$
=$\frac{\sqrt{3}}{3}$+$\sqrt{3}$=$\frac{4\sqrt{3}}{3}$
點評 本題主要考查了兩角和的正切函數(shù)公式及特殊角的三角函數(shù)值的應(yīng)用,考查了三角形內(nèi)角和定理及計算能力,考查了轉(zhuǎn)化思想,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-2] | B. | [2,+∞) | C. | [-2,2] | D. | (-2,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\frac{4}{3}$$\sqrt{2}$ | D. | $\frac{4}{3}$$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com