4.若函數(shù)y=(a2-3a+3)ax是指數(shù)函數(shù),則函數(shù)y=bx+2-a必過定點(diǎn)( 。
A.(0,1)B.(-2,-1)C.(0,-2)D.(-2,-2)

分析 根據(jù)函數(shù)y=(a2-3a+3)ax是指數(shù)函數(shù),得出方程a2-3a+3=1,解得a=2,再判斷函數(shù)y=bx+2-a的圖象恒過定點(diǎn)(-2,-1).

解答 解:因?yàn)楹瘮?shù)y=(a2-3a+3)ax是指數(shù)函數(shù),
所以系數(shù)a2-3a+3=1,
解得a=1(舍去)或a=2,
則函數(shù)y=bx+2-a=bx+2-2,
令x+2=0解得x=2,此時(shí)y=-1,
即函數(shù)y=bx+2-2的圖象恒過點(diǎn)(-2,-1),
故答案為:B.

點(diǎn)評 本題主要考查了指數(shù)函數(shù)的定義,圖象和性質(zhì),尤其是指數(shù)函數(shù)圖象恒過定點(diǎn)(0,1)的運(yùn)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.函數(shù)y=22x-2過定點(diǎn)(1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知三棱柱ABC-A1B1C1的側(cè)棱長為4,底面邊長都為3,A1在底面ABC上的射影為BC的中點(diǎn),則異面直線AB與CC1所成的角的余弦值為(  )
A.$\frac{9}{16}$B.$\frac{3}{4}$C.$\frac{3\sqrt{3}}{16}$D.$\frac{3}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C1的極坐標(biāo)方程為ρ2-2ρcosθ-2ρsinθ+1=0,曲線C2的參數(shù)方程為$\left\{\begin{array}{l}{x=2-\frac{2}{\sqrt{5}}t}\\{y=\frac{1}{\sqrt{5}}t}\end{array}\right.$(t為參數(shù))
(Ⅰ)若曲線C1與C2的交點(diǎn)為A,B,求|AB|;
(Ⅱ)已知點(diǎn)M(ρ,θ)在曲線C1上,求ρ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知數(shù)列{an}的前n項(xiàng)和為Sn=n2,n∈N+
(1)證明:數(shù)列{an}是等差數(shù)列;
(2)設(shè)bn=2${\;}^{{a}_{n}}$,求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)y=log${\;}_{\frac{1}{2}}$(x2-ax+a)在(3,+∞)上是減函數(shù),則a的取值范圍是(-∞,$\frac{9}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知定義在R上的單調(diào)遞增奇函數(shù)f(x),若當(dāng)0≤θ≤$\frac{π}{2}$時(shí),f(cos2θ+2msinθ)+f(-2m-2)<0恒成立,則實(shí)數(shù)m的取值范圍是m>-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在四邊形ABCD中,M為BD上靠近D的三等分點(diǎn),且滿足$\overrightarrow{AM}$=x$\overrightarrow{AB}$+y$\overrightarrow{AD}$,則實(shí)數(shù)x,y的值分別為( 。
A.$\frac{1}{3}$,$\frac{2}{3}$B.$\frac{2}{3}$,$\frac{1}{3}$C.$\frac{1}{2}$,$\frac{1}{2}$D.$\frac{1}{4}$,$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)滿足以下兩個(gè)條件的有窮數(shù)列a1,a2,…,an為n(n=2,3,4,…,)階“期待數(shù)列”:
①a1+a2+a3+…+an=0;
②|a1|+|a2|+|a3|+…+|an|=1.
(1)分別寫出一個(gè)單調(diào)遞增的3階和4階“期待數(shù)列”;
(2)若某2013階“期待數(shù)列”是等差數(shù)列,求該數(shù)列的通項(xiàng)公式;
(3)記n階“期待數(shù)列”的前k項(xiàng)和為Sk(k=1,2,3,…,n),試證:|Sk|≤$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊答案