若將函數(shù)y=sin(2x-
π
4
)的圖象向左平移φ個(gè)單位,所得圖象關(guān)于y軸對(duì)稱,則φ的最小正值是(  )
A、
π
8
B、
π
4
C、
8
D、
4
考點(diǎn):函數(shù)y=Asin(ωx+φ)的圖象變換
專題:三角函數(shù)的圖像與性質(zhì)
分析:由條件利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦、余弦函數(shù)的圖象的對(duì)稱性,可得φ的最小正值.
解答: 解:將函數(shù)y=sin(2x-
π
4
)的圖象向左平移φ個(gè)單位,所得圖象對(duì)應(yīng)的函數(shù)解析式為 函數(shù)y=sin(2x+2φ-
π
4
),
根據(jù)所得圖象關(guān)于y軸對(duì)稱,可得2φ-
π
4
=kπ+
π
2
,k∈z,即 φ=
1
2
kπ+
8
,則φ的最小正值為
8

故選:C.
點(diǎn)評(píng):本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦、余弦函數(shù)的圖象的對(duì)稱性,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線y=
sinx
x
在點(diǎn)M(π,0)處的切線為l,若θ為l的傾斜角,則點(diǎn)P(sinθ,cosθ)在( 。
A、第四象限B、第三象限
C、第二象限D、第一象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正方形ABCD的面積為36,BC平行于x軸,頂點(diǎn)A、B和C分別在函數(shù)y=3logax、y=2logax和y=logax(其中a>1)的圖象上,則實(shí)數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,若
m
=(c,cosC),
n
=(a,sinA),且
m
n

(1)求角C的大。
(2)求
3
sinA-cos(B+
π
4
)的最大值,并求取最大值時(shí)角A,B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在一個(gè)極坐標(biāo)系中點(diǎn)C的極坐標(biāo)為(2,
π
3
)

(1)求出以C為圓心,半徑長(zhǎng)為2的圓的極坐標(biāo)方程(寫(xiě)出解題過(guò)程)并畫(huà)出圖形
(2)在直角坐標(biāo)系中,以圓C所在極坐標(biāo)系的極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立直角坐標(biāo)系,點(diǎn)P是圓C上任意一點(diǎn),Q(5,-
3
)
,M是線段PQ的中點(diǎn),當(dāng)點(diǎn)P在圓C上運(yùn)動(dòng)時(shí),求點(diǎn)M的軌跡的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在矩形ABCD中,O是矩形對(duì)角線的交點(diǎn),
e1
,
e2
是平面上不共線的向量,若
BC
=5
e1
,
DC
=3
e2
,則
OC
=( 。
A、
1
2
(5
e1
-3
e2
B、
1
2
(3
e2
-5
e1
C、
1
2
(5
e1
+3
e2
D、
1
2
(5
e2
-3
e1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

A={x|a-1<x<a+1},B={x|x>5或x<-1},且A∩B=∅,則a的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=log 
1
2
(x2-ax+a)在區(qū)間(2,+∞)上是減函數(shù),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)為定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=ax+1-3(a為常數(shù)),則f(-1)的值為(  )
A、-6B、-3C、-2D、6

查看答案和解析>>

同步練習(xí)冊(cè)答案