14.已知復(fù)數(shù)z滿足:(1+i)z=i(i為虛數(shù)單位),則|z|等于$\frac{\sqrt{2}}{2}$.

分析 利用復(fù)數(shù)運(yùn)算法則、模的計(jì)算公式即可得出.

解答 解:∵(1+i)z=i,
∴(1-i)(1+i)z=i(1-i),
∴z=$\frac{1}{2}+\frac{1}{2}i$,
則|z|=$\sqrt{(\frac{1}{2})^{2}+(\frac{1}{2})^{2}}$=$\frac{\sqrt{2}}{2}$.
故答案為:$\frac{\sqrt{2}}{2}$.

點(diǎn)評 本題考查了復(fù)數(shù)運(yùn)算法則、模的計(jì)算公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知向量$\overrightarrow{a}$=(-3,1),$\overrightarrow$=(6,y),若$\overrightarrow{a}$與$\overrightarrow$共線,則y等于( 。
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知向量$\overrightarrow{a}$、$\overrightarrow$滿足|$\overrightarrow{a}$|=3,且$\overrightarrow{a}$丄($\overrightarrow{a}$+$\overrightarrow$)則$\overrightarrow$在$\overrightarrow{a}$方向上的投影為( 。
A.3B.-3C.$-\frac{{3\sqrt{3}}}{2}$D.$\frac{{3\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在數(shù)列{an}中,a1=3,an+1=2an+5,n∈N+
(1)證明:數(shù)列{an+5}是等比數(shù)列.
(2)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知數(shù)列{bn}前n項(xiàng)和Sn,且b1=1,${b_{n+1}}=\frac{1}{3}{S_n}$.
(1)求b2,b3,b4的值;
(2)求{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)f(x)=|sin$\frac{π}{2}$x|+|cos$\frac{π}{2}$x|的最小正周期是( 。
A.πB.C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如果f($\frac{1}{x}$)=$\frac{x}{1-x}$,則當(dāng)x≠0且x≠1時(shí),f(x)=(  )
A.$\frac{1}{x}$(x≠0且x≠1)B.$\frac{1}{x-1}$(x≠0且x≠1)C.$\frac{1}{1-x}$(x≠0且x≠1)D.$\frac{1}{x}$-1(x≠0且x≠1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.“a=5”是“直線y=x+4與圓(x-a)2+(y-3)2=8相切”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸.已知點(diǎn)P的極坐標(biāo)為(5,0),點(diǎn)M的極坐標(biāo)為(4,$\frac{π}{2}$),若直線l過點(diǎn)P,且傾斜角為$\frac{π}{3}$,圓C以M為圓心,4為半徑.
(1)求直線l和圓C的極坐標(biāo)方程;
(2)試判斷直線l和圓C的位置關(guān)系.

查看答案和解析>>

同步練習(xí)冊答案