分析 (Ⅰ)由題意可知:2a=6,a=3.將點A($\sqrt{6}$,$\frac{2\sqrt{6}}{3}$)代入橢圓方程:$\frac{6}{9}+\frac{8}{3^{2}}=1$,解得:b2=8,則c2=a2-b2=1,即可求得橢圓C的方程和焦點坐標;
(Ⅱ)設(shè)橢圓C上的動點為K(x1,y1),線段F1K的中點Q(x,y)滿足x=$\frac{{x}_{1}-1}{2}$,y=$\frac{{y}_{1}}{2}$;求得x1=2x+1,y1=2y,代入橢圓方程,即可求得線段F1K的中點M的軌跡方程.
解答 解:(Ⅰ)橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦點在x軸上,由A($\sqrt{6}$,$\frac{2\sqrt{6}}{3}$)到F1、F2兩點的距離之和等于6,
則2a=6,即a=3.
又點A($\sqrt{6}$,$\frac{2\sqrt{6}}{3}$)在橢圓上,代入橢圓方程:$\frac{6}{9}+\frac{8}{3^{2}}=1$,解得:b2=8,
于是c2=a2-b2=1.…(4分)
∴橢圓C的方程:$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{8}=1$,…(5分)
焦點F1(-1,0),F(xiàn)2(1,0);…(6分)
(Ⅱ)設(shè)橢圓C上的動點為K(x1,y1),線段F1K的中點Q(x,y)滿足x=$\frac{{x}_{1}-1}{2}$,y=$\frac{{y}_{1}}{2}$;
即x1=2x+1,y1=2y.…(8分)
代入橢圓方程:$\frac{(2x+1)^{2}}{9}+\frac{(2y)^{2}}{8}=1$,整理得:$\frac{(2x+1)^{2}}{9}+\frac{{y}^{2}}{2}=1$,
∴所求的軌跡方程$\frac{(2x+1)^{2}}{9}+\frac{{y}^{2}}{2}=1$.…(12分)
點評 本題考查橢圓的標準方程及簡單幾何性質(zhì),考查軌跡方程的求法,考查計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若a>b>0,則${log_{\frac{1}{2}}}a>{log_{\frac{1}{2}}}b$ | |
B. | 向量$\overrightarrow a=(1,m),\overrightarrow b=(m,2m-1)$(m∈R)共線的充要條件是m=0 | |
C. | 命題“?n∈N*,3n>(n+2)•2n-1”的否定是“?n∈N*,3n≥(n+2)•2n-1” | |
D. | 已知函數(shù)f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的,則命題“若f(a)•f(b)<0,則f(x)在區(qū)間(a,b)內(nèi)至少有一個零點”的逆命題為假命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 內(nèi)切 | B. | 外切 | C. | 相交 | D. | 相離 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2 | D. | log34 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<0,△>0 | B. | a<0,△≥0 | C. | a>0,△≤0 | D. | a>0,△≥0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com