分析 由條件可得x+3y>0,x-y>0,[(x+3y)+(x-y)]($\frac{4}{x+3y}$+$\frac{1}{x-y}$)=5+$\frac{4(x-y)}{x+3y}$+$\frac{x+3y}{x-y}$,運(yùn)用基本不等式和不等式的性質(zhì),即可得到所求最小值.
解答 解:由x>y>0,可得x+3y>0,x-y>0,
[(x+3y)+(x-y)]($\frac{4}{x+3y}$+$\frac{1}{x-y}$)=5+$\frac{4(x-y)}{x+3y}$+$\frac{x+3y}{x-y}$
≥5+2$\sqrt{\frac{4(x-y)}{x+3y}•\frac{x+3y}{x-y}}$=9,
可得$\frac{4}{x+3y}$+$\frac{1}{x-y}$≥$\frac{9}{(x+3y)+(x-y)}$
=$\frac{9}{2(x+y)}$≥$\frac{9}{4}$.
當(dāng)且僅當(dāng)2(x-y)=x+3y,即x=5y=$\frac{5}{3}$時,取得最小值$\frac{9}{4}$.
故答案為:$\frac{9}{4}$.
點(diǎn)評 本題考查最值的求法,注意變形和基本不等式的運(yùn)用,以及不等式的性質(zhì),考查推理和運(yùn)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{13}{2}$ | B. | $\frac{5}{2}$ | C. | -$\frac{5}{2}$ | D. | 6 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com