9.作下列函數(shù)的簡(jiǎn)圖:
(1)y=$\frac{1}{2}$(cosx+|cosx|);
(2)y=sin|x-$\frac{π}{2}$|

分析 化簡(jiǎn)函數(shù)的解析式,作出函數(shù)的圖象.

解答 解:(1)y=$\frac{1}{2}$(cosx+|cosx|)=$\left\{\begin{array}{l}{cosx,x∈[2kπ-\frac{π}{2},2kπ+\frac{π}{2}]}\\{0,x∈[2kπ+\frac{π}{2},2kπ+\frac{3π}{2}]}\end{array}\right.$,它的圖象如圖(A)所示:縱坐標(biāo)的長(zhǎng)度單位為1,


(2)y=sin|x-$\frac{π}{2}$|=$\left\{\begin{array}{l}{-cosx,x≥\frac{π}{2}}\\{cosx,x<\frac{π}{2}}\end{array}\right.$,它的圖象如圖(1)所示:縱坐標(biāo)的長(zhǎng)度單位為1,

點(diǎn)評(píng) 本題主要考查分段函數(shù)的應(yīng)用,正弦函數(shù)、余弦函數(shù)的圖象特征,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)F1、F2分別是雙曲線x2-$\frac{{y}^{2}}{4}$=1的左、右焦點(diǎn),若點(diǎn)P在雙曲線上,且$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,則|$\overrightarrow{P{F}_{1}}$+$\overrightarrow{P{F}_{2}}$|等于( 。
A.$\sqrt{3}$B.2$\sqrt{3}$C.$\sqrt{5}$D.2$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知△ABC中cosA=$\frac{2\sqrt{5}}{5}$,cosB=$\frac{3\sqrt{10}}{10}$,O為△ABC內(nèi)心,2$\sqrt{5}$$\overrightarrow{OA}$+$\sqrt{10}$$\overrightarrow{OB}$+m$\overrightarrow{OC}$=$\overrightarrow{0}$,則m=( 。
A.5$\sqrt{2}$B.2$\sqrt{5}$C.3$\sqrt{10}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知cosα=$\frac{2}{3}$,則tanαsinα=$\frac{5}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)圖象上兩個(gè)相鄰的最值點(diǎn)為($\frac{π}{6}$,2)和($\frac{2π}{3}$,-2)
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)在區(qū)間(0,$\frac{π}{2}$)上的對(duì)稱中心、對(duì)稱軸;
(3)將函數(shù)f(x)圖象上每一個(gè)點(diǎn)向右平移$\frac{π}{3}$個(gè)單位得到函數(shù)y=g(x),令h(x)=f(x)•g(x),求函數(shù)h(x)在區(qū)間(-$\frac{π}{3}$,0)上的最大值,并指出此時(shí)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)集合P={x|x=$\frac{k}{3}$+$\frac{1}{6}$,k∈Z},Q={x|x=$\frac{k}{6}$+$\frac{1}{3}$,k∈Z},則( 。
A.P=QB.P?QC.P?QD.P∩Q=∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知a>0,b>0,c>0,用綜合法證明:$\frac{b+c}{a}$+$\frac{c+a}$+$\frac{a+b}{c}$≥6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)$f(x)=x•ln\frac{a}{x}\;\;(a>0)$.
(Ⅰ)若函數(shù)g(x)=ex在x=0處的切線也是函數(shù)f(x)圖象的一條切線,求實(shí)數(shù)a的值;
(Ⅱ)若函數(shù)f(x)的圖象恒在直線x-y+1=0的下方,求實(shí)數(shù)a的取值范圍;
(Ⅲ)若x1,x2∈($\frac{a}{e}$,$\frac{a}{2}$),且x1≠x2,判斷${({{x_1}+{x_2}})^4}$與a2x1x2的大小關(guān)系,并說(shuō)明理由.
注:題目中e=2.71828…是自然對(duì)數(shù)的底數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知x>y>0,且x+y≤2,則$\frac{4}{x+3y}$+$\frac{1}{x-y}$的最小值為$\frac{9}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案