分析 作出已知不等式組的簡單線性規(guī)劃,如圖所示,確定出最高點,根據(jù)對數(shù)函數(shù)的性質(zhì)確定出所求最小值即可.
解答 解:作出$\left\{\begin{array}{l}{x+y≤3}\\{y≤2x}\end{array}\right.$的簡單線性規(guī)劃,如圖所示,
聯(lián)立得:$\left\{\begin{array}{l}{x+y=3}\\{y=2x}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$,即x+y=3與y=2x的交點坐標為(1,2),為最高點,
∵a=$\frac{1}{2}$時,對數(shù)函數(shù)y=log${\;}_{\frac{1}{2}}$x為減函數(shù),
∴z=log ${\;}_{\frac{1}{2}}$(2x+3y)的最小值為z=log${\;}_{\frac{1}{2}}$(2×1+3×2)=-3,
故答案為:-3
點評 此題考查了對數(shù)函數(shù)的圖象與性質(zhì),根據(jù)題意畫出簡單線性規(guī)劃是解本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [1,+∞) | B. | [1,3] | C. | (3,5] | D. | [3,5] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\frac{5}{3}$ | C. | $\frac{{\sqrt{37}}}{3}$ | D. | $\frac{{\sqrt{35}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$) | B. | (-$\frac{\sqrt{3}}{6}$,$\frac{\sqrt{3}}{6}$) | C. | (-$\frac{2\sqrt{6}}{3}$,$\frac{2\sqrt{6}}{3}$) | D. | (-$\frac{2\sqrt{3}}{3}$,$\frac{2\sqrt{3}}{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 2+$\sqrt{3}$ | D. | 2-$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com