分析 由對任意x∈R,不等式x2-2x-1≥m2-3m恒成立,運(yùn)用二次函數(shù)的最值求法,可得m2-3m≤-2,解不等式可得m的范圍,再由¬p為真命題時,則P為假命題,即可得到所求m的范圍.
解答 解:∵對任意x∈R,不等式x2-2x-1≥m2-3m恒成立,
∴${[{{{({x-1})}^2}-2}]_{min}}≥{m^2}-3m$,即m2-3m≤-2,
即有(m-1)(m-2)≤0,
解得1≤m≤2.
因此,若¬p為真命題時,則P為假命題,
可得m的取值范圍是(-∞,1)∪(2,+∞).
故答案為:(-∞,1)∪(2,+∞).
點(diǎn)評 本題考查不等式恒成立問題的解法,注意運(yùn)用二次函數(shù)的最值求法和二次不等式的解法,同時考查命題的真假判斷,考查轉(zhuǎn)化和運(yùn)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{4}{3}$ | C. | $\frac{8}{3}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x,y∈R,若x+y≠0,則x≠1且y≠-1 | |
B. | a∈R,“$\frac{1}{a}<1$”是“a>1”的必要不充分條件 | |
C. | 命題“?x∈R,使得x2+2x+3<0”的否定是“?x∈R,都有x2+2x+3>0” | |
D. | 設(shè)隨機(jī)變量X~N(1,52),若P(X<0)=P(X>a-2),則實數(shù)a的值為2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 14 | B. | 16 | C. | 36 | D. | 56 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com