分析 由題意求出C點的軌跡是以原點為圓心,以$\sqrt{8+{t}^{2}}$為半徑的圓,再由點C到直線l:3x-4y+24=0的最小距離為$\frac{9}{5}$,轉(zhuǎn)化為關(guān)于t的方程求解.
解答 解:設(shè)C(x0,y0),∵A(-t,0),B(t,0),$\overrightarrow{AC}$•$\overrightarrow{BC}$=8,
∴(x0+t,y0)•(x0-t,y0)=8,即${{x}_{0}}^{2}-{t}^{2}+{{y}_{0}}^{2}=8$,
∴${{x}_{0}}^{2}+{{y}_{0}}^{2}=8+{t}^{2}$,則點C在以原點為圓心,以$\sqrt{8+{t}^{2}}$為半徑的圓上,
又點C到直線l:3x-4y+24=0的最小距離為$\frac{9}{5}$,
即$\frac{|24|}{\sqrt{{3}^{2}+(-4)^{2}}}-\sqrt{8+{t}^{2}}=\frac{9}{5}$,
∴$\sqrt{8+{t}^{2}}=3$,解得:t=±1,
∵t>0,∴t=1.
故答案為:1.
點評 本題考查平面向量的數(shù)量積運算,考查了直線與圓位置關(guān)系的應(yīng)用,訓(xùn)練了點到直線距離公式的應(yīng)用,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com