15.已知i為虛數(shù)單位,復(fù)數(shù)z=2i+$\frac{2}{1+i}$,則復(fù)數(shù)z的模為$\sqrt{5}$.

分析 利用復(fù)數(shù)的運(yùn)算性質(zhì)、復(fù)數(shù)模的計(jì)算公式即可得出.

解答 解:復(fù)數(shù)z=2i+$\frac{2}{1+i}$=2i+$\frac{2(1-i)}{(1+i)(1-i)}$=2+i,
則復(fù)數(shù)|z|=$\sqrt{{2}^{2}+{1}^{2}}$=$\sqrt{5}$.
故答案為:$\sqrt{5}$.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算性質(zhì)、模的計(jì)算公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.設(shè)正項(xiàng)數(shù)列{an}是等比數(shù)列,前n項(xiàng)和為Sn,若S3=7a3,則公比q為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.2016年3月9日至15日,谷歌人工智能系統(tǒng)“阿爾法”迎戰(zhàn)圍棋冠軍李世石,最終結(jié)果“阿爾法”以總比分4比1戰(zhàn)勝李世石.許多人認(rèn)為這場(chǎng)比賽是人類的勝利,也有許多人持反對(duì)意見(jiàn),有網(wǎng)友為此進(jìn)行了調(diào)查,在參加調(diào)查的2548名男性中有1560名持反對(duì)意見(jiàn),2452名女性中有1200名持反對(duì)意見(jiàn),在運(yùn)用這些數(shù)據(jù)說(shuō)明“性別”對(duì)判斷“人機(jī)大戰(zhàn)是人類的勝利”是否有關(guān)系時(shí),應(yīng)采用的統(tǒng)計(jì)方法是( 。
A.莖葉圖B.分層抽樣C.獨(dú)立性檢驗(yàn)D.回歸直線方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)曲線y=$\frac{x+1}{x-1}$在點(diǎn)(3,2)處的切線與直線ax+y+3=0有相同的方向向量,則a等于(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知z=$\frac{4}{1+i}$(i是虛數(shù)單位),則復(fù)數(shù)z的實(shí)部為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(-t,0)(t>0),B(t,0),點(diǎn)C滿足$\overrightarrow{AC}$•$\overrightarrow{BC}$=8,且點(diǎn)C到直線l:3x-4y+24=0的最小距離為$\frac{9}{5}$,則實(shí)數(shù)t的值是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.(x+1)(x2-$\frac{2}{x^3}$)5的展開(kāi)式中的常數(shù)項(xiàng)為( 。
A.80B.-80?C.40D.-40

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知{an}為等比數(shù)列,Sn是它的前n項(xiàng)和,若a2a3=2a1,且a4與2a7的等差中項(xiàng)為$\frac{5}{4}$,則S4=( 。
A.29B.30C.31D.33

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知數(shù)列{an}滿足a1=15,a2=$\frac{43}{3}$,且2an+1=an+an+2.若ak•ak+1<0,則正整數(shù)k=( 。
A.21B.22C.23D.24

查看答案和解析>>

同步練習(xí)冊(cè)答案