1.設(shè)數(shù)列{an}為等差數(shù)列,其前n項(xiàng)和為Sn,已知a1+a4+a10=27,則a5=9,S9=81.

分析 等差數(shù)列的性質(zhì)可得:a1+a4+a10=27=3a5,解得a5,再利用S9=$\frac{9({a}_{1}+{a}_{9})}{2}$=9a5.即可得出.

解答 解:由等差數(shù)列的性質(zhì)可得:a1+a4+a10=27=3a5,解得a5=9,
∴S9=$\frac{9({a}_{1}+{a}_{9})}{2}$=9a5=81.
故答案分別為:9;81.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式與求和公式及其性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=$\sqrt{x-3}$-$\frac{1}{{\sqrt{7-x}}}$的定義域?yàn)榧螦,B={x∈Z|0<x<10},C={x∈R|2a+3<x<a+5}.
(1)求A,(∁RA)∩B;
(2)若A∩C=C,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.算法共有三種邏輯結(jié)構(gòu):順序結(jié)構(gòu),條件結(jié)構(gòu),循環(huán)結(jié)構(gòu),在下列說(shuō)法中正確的是( 。
A.一個(gè)算法中只能含有一種邏輯結(jié)構(gòu)
B.一個(gè)算法中可以含有以上三種邏輯結(jié)構(gòu)
C.一個(gè)算法中必須含有以上三種邏輯結(jié)構(gòu)
D.一個(gè)算法中最多可以含有以上兩種邏輯結(jié)構(gòu)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.設(shè)集合U={-3,-2,-1,0,1,2,3},集合A={-1,0,1},那么∁UA={-3,-2,2,3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知幾何體的三視圖(如圖),則該幾何體的體積為$\frac{4\sqrt{2}}{3}$,表面積為4$\sqrt{3}$+4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知向量$\overrightarrow a$=(0,2,1),$\overrightarrow b$=(-1,1,-2),則$\overrightarrow a$與$\overrightarrow b$的夾角的大小為$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.(1)計(jì)算:$\frac{-3+i}{2-4i}$;
(2)在復(fù)平面內(nèi),復(fù)數(shù)z=(m+2)+(m2-m-2)i對(duì)應(yīng)的點(diǎn)在第一象限,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.在等差數(shù)列{an}中,Sn為其前n項(xiàng)和(n∈N*),且a3=5,S3=9.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.若方程2|x-1|-kx=0有且只有一個(gè)正根,則實(shí)數(shù)k的取值范圍是{k|k=0或k≥2}.

查看答案和解析>>

同步練習(xí)冊(cè)答案