(2012•鐘祥市模擬)A,B,C,D是同一球面上的四個點,其中△ABC是正三角形,AD⊥平面ABC,AD=2AB=6,則該球的體積為( 。
分析:由題意把A、B、C、D擴(kuò)展為三棱柱如圖,求出上下底面中心連線的中點與A的距離為球的半徑,然后求出球的體積.
解答:解:由題意畫出幾何體的圖形如圖,
把A、B、C、D擴(kuò)展為三棱柱,
上下底面中心連線的中點與A的距離為球的半徑,
AD=2AB=6,OE=3,△ABC是正三角形,
所以AE=
2
3
AB2-(
1
2
AB)
2
=
3

AO=
32+(
3
)
2
=2
3

所求球的體積為:
3
(2
3
)
3
=32
3
π

故選A.
點評:本題考查球的內(nèi)接體與球的關(guān)系,考查空間想象能力,利用割補法結(jié)合球內(nèi)接多面體的幾何特征求出球的半徑是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•鐘祥市模擬)設(shè)x,y滿足
3x-y-6≤0
x-y+2≥0
x+y≥3
,若目標(biāo)函數(shù)z=ax+y(a>0)最大值為14,則a為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•鐘祥市模擬)已知
a
=(1,2),
b
=(-3,2)
,當(dāng)k
a
+
b
a
-3
b
平行時,k的值為
-
1
3
-
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•鐘祥市模擬)(選修4-4:坐標(biāo)系與參數(shù)方程)
已知直角坐標(biāo)系xoy中,直線l的參數(shù)方程為
x=t-3 
y=
3
(t為參數(shù))
.以直角坐標(biāo)系xOy中的原點O為極點,x軸的非負(fù)半軸為極軸,圓C的極坐標(biāo)方程為ρ2-4ρcosθ+3=0,則圓心C到直線l距離為
5
3
2
5
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•鐘祥市模擬)已知點P為雙曲線
x2
a2
y2
b2
=1
(a,b>o),被斜率為1的直線截得的弦的中點為(4,1),該雙曲線離心率是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•鐘祥市模擬)如果關(guān)于x的不等式|x-1|+|x+2|<a的解集不是空集,則實數(shù)a的取值范圍為
(3,+∞)
(3,+∞)

查看答案和解析>>

同步練習(xí)冊答案