12.已知△ABC外接圓的圓心為O,且$\overrightarrow{AO}=\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$,則$\overrightarrow{AB}$與$\overrightarrow{AC}$的夾角為( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

分析 可由$\overrightarrow{AO}=\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$得出點O為邊BC的中點,從而得出邊BC為△ABC外接圓的直徑,從而得出$∠BAC=\frac{π}{2}$,這樣即可得出$\overrightarrow{AB}$與$\overrightarrow{AC}$的夾角.

解答 解:如圖,

∵$\overrightarrow{AO}=\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$;
∴圓心O為BC邊的中點;
∴BC為外接圓的直徑;
∴$∠BAC=\frac{π}{2}$;
即$\overrightarrow{AB}$與$\overrightarrow{AC}$的夾角為$\frac{π}{2}$.
故選:D.

點評 考查向量加法的平行四邊形法則,圓的直徑過圓心,以及直徑所對的圓周角為直角,向量夾角的概念.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知點A(2,0),點B(0,3),點C在圓x2+y2=1上,當(dāng)△ABC的面積最小時,點C的坐標(biāo)為($\frac{{3\sqrt{13}}}{13}$,$\frac{{2\sqrt{13}}}{13}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=4+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$ (t為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸建建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=2cosθ.
(I)求曲線C的直角坐標(biāo)方程與直線l的極坐標(biāo)方程;
(Ⅱ)若直線θ=$\frac{π}{6}$與曲線C交于點A(不同于原點),與直線l交于點B,求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在區(qū)間[-4,4]上隨機(jī)地取一個實數(shù)x,則事件“x2-2x-3≤0”發(fā)生的概率是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=(ex+1)(ax+2a-2),若存在x∈(0,+∞),使得不等式f(x)-2<0成立,則實數(shù)a的取值范圍是( 。
A.(0,1)B.(0,$\frac{3}{2}$)C.(-∞,1)D.(-∞,$\frac{4}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在長為2的線段AB上任意取一點C,以線段AC為半徑的圓面積小于π的概率為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知直線l1:mx+y-2=0,l2:6x+(2m-1)y-6=0,若l1∥l2,則實數(shù)m的值是( 。
A.-$\frac{3}{2}$B.2C.-$\frac{3}{2}$或-2D.$\frac{3}{2}$或-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知向量$\overrightarrow a$=(t,1)與$\overrightarrow b$=(4,t)共線且方向相同,則實數(shù)t=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.化簡:
(1)1+2${C}_{n}^{1}$+4C${\;}_{n}^{2}$+…+2nC${\;}_{n}^{n}$;
(2)(x-1)5+5(x-1)4+10(x-1)3+10(x-1)2+5(x-1).

查看答案和解析>>

同步練習(xí)冊答案