7.已知函數(shù)f(x)=(ex+1)(ax+2a-2),若存在x∈(0,+∞),使得不等式f(x)-2<0成立,則實(shí)數(shù)a的取值范圍是( 。
A.(0,1)B.(0,$\frac{3}{2}$)C.(-∞,1)D.(-∞,$\frac{4}{3}$)

分析 由題意分離出a可得存在x∈(0,+∞),使得不等式a<$\frac{2}{x+2}$+$\frac{2}{(x+2)(2+{e}^{x})}$成立,由函數(shù)的單調(diào)性求出右邊式子的最大值可得.

解答 解:由題意可得存在x∈(0,+∞),使得不等式(ex+1)(ax+2a-2)-2<0成立,
故可得存在x∈(0,+∞),使得不等式(ex+1)(ax+2a-2)<2成立,
即存在x∈(0,+∞),使得不等式a(x+2)<2+$\frac{2}{2+{e}^{x}}$成立,
即存在x∈(0,+∞),使得不等式a<$\frac{2}{x+2}$+$\frac{2}{(x+2)(2+{e}^{x})}$成立,
又可得函數(shù)g(x)=$\frac{2}{x+2}$+$\frac{2}{(x+2)(2+{e}^{x})}$在x∈(0,+∞)單調(diào)遞減,
∴g(x)<g(0)=$\frac{4}{3}$,∴實(shí)數(shù)a的取值范圍為(-∞,$\frac{4}{3}$)
故選:D.

點(diǎn)評(píng) 本題以特稱命題為載體,考查函數(shù)的單調(diào)性和值域,屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.A、B兩島相距100海里,B在A北偏東30°方向,甲船A以50海里/小時(shí)的速度向B航行,同時(shí),乙船從B以30誨里/小時(shí)的速度沿南偏東30°方向航行,則$1\frac{16}{49}$小時(shí)后兩船之間距離最小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)點(diǎn)(a,b)是區(qū)域$\left\{\begin{array}{l}x+y-4≤0\\ x>0\\ y>0\end{array}$內(nèi)的任意一點(diǎn),則使函數(shù)f(x)=ax2-2bx+3在區(qū)間[$\frac{1}{2}$,+∞)上是增函數(shù)的概率為( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若隨機(jī)變量X~N(2,1),且P(X>3)=0.1587,則P(X<1)=( 。
A.0.8413B.0.6587C.0.1587D.0.3413

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}x+2y≤6\\ 2x-y≤6\\ x≥0,y≥0\end{array}\right.$則x-3y>0的概率是( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{3}{4}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知△ABC外接圓的圓心為O,且$\overrightarrow{AO}=\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$,則$\overrightarrow{AB}$與$\overrightarrow{AC}$的夾角為( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.為了得到函數(shù)的圖象y=sin3x,只需把函數(shù)y=sin(3x+1)的圖象上所有的點(diǎn)(  )
A.向左平移1個(gè)單位長(zhǎng)度B.向右平移1個(gè)單位長(zhǎng)度
C.向左平移$\frac{1}{3}$個(gè)單位長(zhǎng)度D.向右平移$\frac{1}{3}$個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若sinx=$\frac{\sqrt{5}}{5}$,則cos2x=( 。
A.-$\frac{3}{5}$B.$\frac{3}{5}$C.-$\frac{3}{\sqrt{5}}$D.$\frac{3}{\sqrt{5}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)f(n)=(a+b)n(n∈N*,n≥2),若f(n)的展開式中,存在某連續(xù)3項(xiàng),其二項(xiàng)式系數(shù)依次成等差數(shù)列,則稱f(n)具有性質(zhì)P.
(1)求證:f(7)具有性質(zhì)P;
(2)若存在n≤2016,使f(n)具有性質(zhì)P,求n的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案