2.化簡:
(1)1+2${C}_{n}^{1}$+4C${\;}_{n}^{2}$+…+2nC${\;}_{n}^{n}$;
(2)(x-1)5+5(x-1)4+10(x-1)3+10(x-1)2+5(x-1).

分析 逆用二項式定理,計算即得結(jié)論.

解答 解:(1)由二項式定理可知1+2${C}_{n}^{1}$+4C${\;}_{n}^{2}$+…+2nC${\;}_{n}^{n}$
=(1+2)n
=3n;
(2)由二項式定理可知(x-1)5+5(x-1)4+10(x-1)3+10(x-1)2+5(x-1)
=[(x-1)+1]5-1
=x5-1.

點評 本題考查二項式定理的應(yīng)用,考查運算求解能力,注意解題方法的積累,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知△ABC外接圓的圓心為O,且$\overrightarrow{AO}=\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$,則$\overrightarrow{AB}$與$\overrightarrow{AC}$的夾角為( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知數(shù)列{an},Sn為其前n項的和,滿足Sn=$\frac{n(n+1)}{2}$.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{$\frac{1}{a_n}$}的前n項和為Tn,數(shù)列{Tn}的前n項和為Rn,求證:當(dāng)n≥2,n∈N*時Rn-1=n(Tn-1);
(3)已知當(dāng)n∈N*,且n≥6時有(1-$\frac{m}{n+3}$)n<($\frac{1}{2}$)m,其中m=1,2,…,n,求滿足3n+4n+…+(n+2)n=(an+3)an的所有n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知復(fù)數(shù)z=$\frac{3+2i}{2-3i}$,則z的共軛復(fù)數(shù)$\overline z$=(  )
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)f(n)=(a+b)n(n∈N*,n≥2),若f(n)的展開式中,存在某連續(xù)3項,其二項式系數(shù)依次成等差數(shù)列,則稱f(n)具有性質(zhì)P.
(1)求證:f(7)具有性質(zhì)P;
(2)若存在n≤2016,使f(n)具有性質(zhì)P,求n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在我國古代著名的數(shù)學(xué)專著《九章算術(shù)》里有一段敘述:今有良馬與駑馬發(fā)長安至齊,齊去長安一千一百二十五里,良馬初日行一百零三里,日增十三里;駑馬初日行九十七里,日減半里;良馬先至齊,復(fù)還迎駑馬,二馬相逢.問:幾日相逢?( 。
A.9日B.8日C.16日D.12日

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)y=f(x)滿足f(3+x)=f(1-x)且f(1+x)=f(2-x),求證:y=f(x)是一個周期函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x≤1}\\{\frac{2}{x},x>1}\end{array}\right.$,則f(f(2))=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知單位向量$\overrightarrow{a}$,$\overrightarrow$間的夾角為$\frac{2π}{3}$,則|4$\overrightarrow{a}$-5$\overrightarrow$|=$\sqrt{61}$.

查看答案和解析>>

同步練習(xí)冊答案