16.已知函數(shù)f(x)=log2(1+x)-log2(1-x),則f(x)是( 。
A.奇函數(shù)B.偶函數(shù)
C.既是奇函數(shù)也是偶函數(shù)D.既不是奇函數(shù)也不是偶函數(shù)

分析 由對(duì)數(shù)有意義可得函數(shù)的定義域,由函數(shù)的奇偶性定義可得.

解答 解:由對(duì)數(shù)有意義可得$\left\{\begin{array}{l}{1+x>0}\\{1-x>0}\end{array}\right.$,解得-1<x<1,
∴函數(shù)f(x)的定義域?yàn)椋?1,1),關(guān)于原點(diǎn)對(duì)稱,
∵f(-x)=log2(1-x)-log2(1+x)=-f(x),
∴函數(shù)f(x)為奇函數(shù)
故選:A

點(diǎn)評(píng) 本題考查函數(shù)的奇偶性,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)函數(shù)f(x)=ex+ax+b點(diǎn)(0,f(0))處的切線方程為x+y+1=0.
(Ⅰ)求a,b值,并求f(x)的單調(diào)區(qū)間;
(Ⅱ)證明:當(dāng)x≥0時(shí),f(x)>x2+4$\sqrt{x+1}$-2x-8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,△ABC的頂點(diǎn)都在圓O上,點(diǎn)P在BC的延長線上,且PA與圓O切于點(diǎn)A.
(1)若∠ACB=70°,求∠BAP的度數(shù);
(2)若$\frac{AC}{AB}$=$\frac{2}{5}$,求$\frac{PC}{PB}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.某校開展繪畫比賽,9位評(píng)委為參賽作品A給出的分?jǐn)?shù)如莖葉圖所示.記分員在去掉一個(gè)最高分和一個(gè)最低分后,算得平均分為91,但復(fù)核員在復(fù)核時(shí),發(fā)現(xiàn)有一個(gè)數(shù)字(莖葉圖中的x)無法看清.若記分員計(jì)算無誤,則數(shù)字x應(yīng)該是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}-2{x^2}+1(x≥1)\\ lo{g_2}(1-x)(x<1)\end{array}\right.$,則f(f(4))=5;若f(a)=-1,則a=1或$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知i為虛數(shù)單位,則$|{\frac{2-i}{1+i}}|$=( 。
A.$\frac{{\sqrt{5}}}{2}$B.$\frac{5}{2}$C.$\frac{{\sqrt{17}}}{2}$D.$\frac{{\sqrt{10}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知邊長為1的等邊三角形ABC與正方形ABDE有一公共邊AB,二面角C-AB-D的余弦值為$\frac{{\sqrt{3}}}{3}$,若A、B、C、D、E在同一球面上,則此球的體積為( 。
A.B.$\frac{{8\sqrt{2}}}{3}$πC.$\sqrt{2}$πD.$\frac{{\sqrt{2}}}{3}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在多面體ABCDE中,CD和BE都垂直于平面ABC,且∠ACB=90°,AB=4,BE=1,CD=3,DE=2$\sqrt{2}$.
(Ⅰ)求證:BE∥平面ACD;
(Ⅱ)求多面體ABCDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)f(x)=ex-ax+a(a∈R),其圖象與x軸交于A(x1,0),B(x2,0)兩點(diǎn),且x1<x2
(1)求a的取值范圍;
(2)證明:$f'({\sqrt{{x_1}{x_2}}})\;<0$(f′(x)為函數(shù)f(x)的導(dǎo)函數(shù));
(3)設(shè)點(diǎn)C在函數(shù)y=f(x)的圖象上,且△ABC為等腰直角三角形,記$\sqrt{\frac{{{x_2}-1}}{{{x_1}-1}}}$=t,求(a-1)(t-1)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案