1.已知i為虛數(shù)單位,則$|{\frac{2-i}{1+i}}|$=( 。
A.$\frac{{\sqrt{5}}}{2}$B.$\frac{5}{2}$C.$\frac{{\sqrt{17}}}{2}$D.$\frac{{\sqrt{10}}}{2}$

分析 利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡,然后代入復(fù)數(shù)模的公式求解.

解答 解:由$\frac{2-i}{1+i}=\frac{(2-i)(1-i)}{(1+i)(1-i)}=\frac{1-3i}{2}=\frac{1}{2}-\frac{3}{2}i$,
得$|{\frac{2-i}{1+i}}|$=$|\frac{1}{2}-\frac{3}{2}i|=\frac{\sqrt{10}}{2}$.
故選:D.

點(diǎn)評 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)模的求法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)函數(shù)f(x)=x•lnx2,g(x)=$\left\{\begin{array}{l}{{e}^{x}-{e}^{-x},x>0}\\{{e}^{-x}-{e}^{x},x<0}\end{array}\right.$則下列命題正確的是( 。
A.f(x)是奇函數(shù),g(x)是奇函數(shù)B.f(x)是偶函數(shù),g(x)是奇函數(shù)
C.f(x)是奇函數(shù),g(x)是偶函數(shù)D.f(x)是偶函數(shù),g(x)是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}x+3y-3≤0\\ x-y+1≥0\\ y≥-1\end{array}\right.$則z=2|x|+y的取值范圍是( 。
A.[-1,3]B.[1,11]C.[1,3]D.[-1,11]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,拋物線E:y2=2px(p>0)的焦點(diǎn)為F,其準(zhǔn)線l與x軸交于點(diǎn)A,過拋物線E上的動點(diǎn)p作PD⊥l于點(diǎn)D.當(dāng)∠DPF=$\frac{2π}{3}$時,|PF|=4.
(Ⅰ)求拋物線E的方程;
(Ⅱ)過點(diǎn)P作直線m⊥DF,求直線m與拋物線E的交點(diǎn)個數(shù);
(Ⅲ)點(diǎn)C是△DPF的外心,是否存在點(diǎn)P,使得△CDP的面積最。舸嬖冢埱蟪雒娣e的最小值及P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=log2(1+x)-log2(1-x),則f(x)是( 。
A.奇函數(shù)B.偶函數(shù)
C.既是奇函數(shù)也是偶函數(shù)D.既不是奇函數(shù)也不是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.一個幾何體的三視圖如圖,則其表面積為( 。
A.20B.18C.14+2$\sqrt{3}$D.14+2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)函數(shù)f(x)=2ln(x+1)+$\frac{x^2}{x+1}$.
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)如果對所有的x≥0,都有f(x)≤ax,求a的最小值;
(Ⅲ)已知數(shù)列{an}中,a1=1,且(1-an+1)(1+an)=1,若數(shù)列{an}的前n項(xiàng)和為Sn,求證:Sn>$\frac{{{a_{n+1}}}}{{2{a_n}}}-ln{a_{n+1}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在五張卡片上分別寫出有2,3,4,5,6這5個數(shù)字,其中6可以當(dāng)9使用,從中任取3張,組成三位數(shù),這樣的三位數(shù)個數(shù)為(  )
A.60個B.70個C.96個D.136個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=x2+ax-lnx(a∈R).
(Ⅰ)當(dāng)a=0時,求f(x)的單調(diào)區(qū)間與極值;
(Ⅱ)令g(x)=f(x)-x2,若函數(shù)g(x)在x∈(0,e]的最小值為3,求實(shí)數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊答案