分析 通過平方關系得到關于m的表達式,求出m的值,結合三角函數的性質,判斷m的值即可.
解答 解:∵sin2θ+cos2θ=1
∴$\frac{(m-3)^{2}}{(m+5)^{2}}$+$\frac{(4-2m)^{2}}{(m+5)^{2}}$=1,
∴(m-3)2+(4-2m)2=(m+5)2
即m2-6m+9+16-16m+4m2=m2+10m+25
即25-22m+4m2=10m+25
即-32m+4m2=0
即m=0,或m=8
因為$\frac{π}{2}$<θ<π,當m=0時,sinθ=-
3 |
5 |
點評 本題考查同角三角函數的基本關系式的應用,考查計算能力,象限角三角函數值的符號,是基礎題
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com