分析 (1)由題意可得3(an+1-1)=(an-1),從而可得b1=$\frac{2}{3}$,$\frac{_{n+1}}{_{n}}$=$\frac{1}{3}$,從而證明;從而求得an=$\frac{2}{3}$•$(\frac{1}{3})^{n-1}$+1;
(2)化簡${c_n}=log_3^{\frac{{{{({a_n}-1)}^2}}}{4}}$=log3$\frac{(\frac{2}{3}•(\frac{1}{3})^{n-1})^{2}}{4}$=log33-2n=-2n,從而可得$\frac{1}{{c}_{n}{c}_{n+2}}$=$\frac{1}{8}$($\frac{1}{n}$-$\frac{1}{n+2}$),從而利用裂項求和法求解.
解答 解:(1)∵3an+1=an+2,∴3(an+1-1)=(an-1),
又∵b1=a1-1=$\frac{5}{3}$-1=$\frac{2}{3}$,∴$\frac{_{n+1}}{_{n}}$=$\frac{{a}_{n+1}-1}{{a}_{n}-1}$=$\frac{1}{3}$,
故數列{bn}是以$\frac{2}{3}$為首項,$\frac{1}{3}$為公比的等比數列;
∴bn=an-1=$\frac{2}{3}$•$(\frac{1}{3})^{n-1}$,
∴an=$\frac{2}{3}$•$(\frac{1}{3})^{n-1}$+1;
(2)${c_n}=log_3^{\frac{{{{({a_n}-1)}^2}}}{4}}$=log3$\frac{(\frac{2}{3}•(\frac{1}{3})^{n-1})^{2}}{4}$=log33-2n=-2n,
∴$\frac{1}{{c}_{n}{c}_{n+2}}$=$\frac{1}{(-2n)(-2(n+2))}$=$\frac{1}{4}$•$\frac{1}{n(n+2)}$=$\frac{1}{8}$($\frac{1}{n}$-$\frac{1}{n+2}$),
∴Tn=$\frac{1}{8}$[(1-$\frac{1}{3}$)+($\frac{1}{2}$-$\frac{1}{4}$)+($\frac{1}{3}$-$\frac{1}{5}$)+…+($\frac{1}{n-1}$-$\frac{1}{n+1}$)+($\frac{1}{n}$-$\frac{1}{n+2}$)]
=$\frac{1}{8}$(1+$\frac{1}{2}$-$\frac{1}{n+1}$-$\frac{1}{n+2}$)
=$\frac{3}{16}$-$\frac{1}{8}$($\frac{1}{n+1}$+$\frac{1}{n+2}$)<$\frac{3}{16}$,
故m≥3,
故m=3.
點評 本題考查了等比數列的證明及裂項求和法的應用.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{5}{3}$或$-\frac{1}{3}$ | B. | $\frac{5}{3}$或$\frac{1}{3}$ | C. | $-\frac{1}{3}$或$-\frac{5}{3}$ | D. | $\frac{1}{3}$或$-\frac{5}{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | c≤1 | B. | c≥1 | C. | c<0 | D. | c∈R |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com