分析 (1)代入f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$可得f(2)+f($\frac{1}{2}$)=1,f(3)+f($\frac{1}{3}$)=1;
(2)化簡(jiǎn)f(x)+f($\frac{1}{x}$)=$\frac{{x}^{2}}{1+{x}^{2}}$+$\frac{1}{1+{x}^{2}}$=1;
(3)由f(x)+f($\frac{1}{x}$)=1得f(2)+f($\frac{1}{2}$)=1,f(3)+f($\frac{1}{3}$)=1,…,f(2014)+f($\frac{1}{2014}$)=1,從而解得.
解答 解:(1)∵f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$,
f(2)+f($\frac{1}{2}$)=$\frac{{2}^{2}}{1+{2}^{2}}$+$\frac{(\frac{1}{2})^{2}}{1+(\frac{1}{2})^{2}}$=1,
f(3)+f($\frac{1}{3}$)=$\frac{{3}^{2}}{1+{3}^{2}}$+$\frac{(\frac{1}{3})^{2}}{1+(\frac{1}{3})^{2}}$=1;
(2)證明:f(x)+f($\frac{1}{x}$)=$\frac{{x}^{2}}{1+{x}^{2}}$+$\frac{(\frac{1}{x})^{2}}{1+(\frac{1}{x})^{2}}$
=$\frac{{x}^{2}}{1+{x}^{2}}$+$\frac{1}{1+{x}^{2}}$=1;
(3)解:∵f(x)+f($\frac{1}{x}$)=1,
∴f(2)+f($\frac{1}{2}$)=1,
f(3)+f($\frac{1}{3}$)=1,
…,
f(2014)+f($\frac{1}{2014}$)=1,
∴f(2)+f($\frac{1}{2}$)+f(3)+f($\frac{1}{3}$)+…+f(2014)+f($\frac{1}{2014}$)=2013.
點(diǎn)評(píng) 本題考查了函數(shù)的性質(zhì)的判斷與應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一象限角 | B. | 第二象限角 | C. | 第三象限角 | D. | 第四象限角 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3+i | B. | 3-i | C. | 3+2i | D. | 2-i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $(-∞,-\frac{1}{2})$ | B. | $(-\frac{1}{2},+∞)$ | C. | (2,+∞) | D. | (-∞,-3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $f(x)=\sqrt{x^2}$ | B. | $f(x)=\root{5}{x^5}$ | C. | $f(x)={(\sqrt{x})^2}$ | D. | f(x)=|x| |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com