已知函數(shù)f(x)=x2+mx-1.
(1)若對于任意的x∈[m,m+1],都有f(x)<0成立,求實(shí)數(shù)m的取值范圍;
(2)如果關(guān)于x的不等式f(x)≤
5
4
m有解,求實(shí)數(shù)m的取值范圍.
考點(diǎn):二次函數(shù)在閉區(qū)間上的最值,二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)由題意可得
f(m)=2m2-1<0
f(m+1)=2m2+3m<0
,由此求得實(shí)數(shù)m的取值范圍.
(2)由題意可得
5m
4
≥fmin(x)=-
m2
4
-1,由此求得m的范圍.
解答: 解:(1)由題意可得
f(m)=2m2-1<0
f(m+1)=2m2+3m<0
,求得-
2
2
<m<0,
即實(shí)數(shù)m的取值范圍為(-
2
2
,0).
(2)由題意可得
5m
4
≥fmin(x)=-
m2
4
-1,求得 m≤-4,或m≥-1,
即實(shí)數(shù)m的取值范圍為 {m|m≤-4,或m≥-1}.
點(diǎn)評:本題主要考查二次函數(shù)的圖象和性質(zhì)應(yīng)用,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
1
3
x3+4x2-7x-2,則f′(1)=( 。
A、-2B、1C、0D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+|x-a|+1,x∈R,a∈R.
(Ⅰ)當(dāng)a=1時,求函數(shù)f(x)的最小值;
(Ⅱ)若函數(shù)f(x)的最小值為g(a),令m=g(a),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,∠B=60°,AC=
3
,求AB+BC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)有3名男生,4名女生排成一行.
(1)若男生必須排在一起,有多少種排法?
(2)若男生、女生各不相鄰,有多少種排法?
(3)若甲在乙的左邊,有多少種排法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
,其中一個焦點(diǎn)F(
3
,0)
(Ⅰ)求橢圓E的方程;
(Ⅱ)若B、C為橢圓E長軸的左、右兩端點(diǎn),且
GC
=3
BG
,點(diǎn)A在橢圓E上.求|GA|的取值范圍.
(Ⅲ)若橢圓E與y軸的負(fù)半軸交于點(diǎn)P,l1,l2是過點(diǎn)P且互相垂直的兩條直線,l1與以橢圓E的長軸為直徑的圓交于兩點(diǎn)M、N,l2交橢圓E于另一點(diǎn)D,求△MND面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1,F(xiàn)2分別是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn).
(1)設(shè)點(diǎn)A(1,
3
2
)是橢圓C上的點(diǎn),且F1(-1,0),F(xiàn)2(1,0),試寫出橢圓C的方程;
(2)設(shè)K是(1)中所得橢圓上的動點(diǎn),求線段KF1的中點(diǎn)B的軌跡方程;
(3)設(shè)點(diǎn)P是橢圓C上的任意一點(diǎn),過原點(diǎn)的直線L與橢圓相交于M、N兩點(diǎn),若直線PM,PN的斜率都存在,并記為KPM,KPN,試探究KPM•KPN的值是否與點(diǎn)P及直線L有關(guān),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax+xlnx的圖象在點(diǎn)x=e(e為自然對數(shù)的底數(shù))處的切線斜率為3
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)若函數(shù)g(x)=
f(x)
x
+
9
2(x+1)
-k
僅有一個零點(diǎn),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知AB⊥平面ACD,DE⊥平面ACD,△ACD為等邊三角形,DE=2AB=2,AE與平面ACD所成角為
π
4
,F(xiàn)在線段CD上,且FD=2CF.
(Ⅰ)試判斷直線AF與平面BCE的位置關(guān)系,并加以證明;
(Ⅱ)求多面體ABEDF的體積.

查看答案和解析>>

同步練習(xí)冊答案