【題目】已知圓經過點、,并且直線平分圓.

)求圓的方程;

)若過點,且斜率為的直線與圓有兩個不同的交點.

)求實數(shù)的取值范圍;

)若,求的值.

【答案】(;()(,(.

【解析】試題分析:()確定圓需要三個條件,求圓方程可用待定系數(shù)法或直接法,此處是充分運用平幾知識,求出圓心和半徑,直接寫方程;()直線與圓的關系既可用幾何法,也可運用代數(shù)法,這里兩種方法都用了,感受一下,何時用何法的內在規(guī)律,韋達定理一定要和判別式結合使用,否則易犯錯.

試題解析:()線段的中點,故線段的中垂線方程為,即.

因為圓經過兩點,故圓心在線段的中垂線上.

又因為直線平分圓,所以直線經過圓心.

解得,即圓心的坐標為,而圓的半徑,所以圓的方程為: 5

)直線的方程為.

圓心到直線的距離,

)由題意得,兩邊平方整理得:

解之得8

)將直線的方程與圓的方程組成方程組得: 消去,整理得

10

,則由根與系數(shù)的關系可得:

,

所以

12

故有,解得.經檢驗知,此時有,所以14

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知圓.

(1)判斷圓與圓的位置關系,并說明理由;

(2)若過點的直線 與圓相切,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐的底面為正方形,⊥底面,分別是的中點,.

(Ⅰ)求證∥平面

(Ⅱ)求直線與平面所成的角;

(Ⅲ)求四棱錐的外接球的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】三國魏人劉徽,自撰《海島算經》,專論測高望遠.其中有一題今有望海島,立兩表齊,高三丈,前後相去千步,令後表與前表相直。從前表卻行一百二十三步,人目著地取望島峰,與表末參合。從後表卻行百二十七步,人目著地取望島峰,亦與表末參合。問島高及去表各幾何?翻譯如下:要測量海島上一座山峰的高度,立兩根高三丈的標桿,前后兩竿相距,使后標桿桿腳與前標桿桿腳與山峰腳在同一直線上,從前標桿桿腳退行步到,人眼著地觀測到島峰,、、三點共線,從后標桿桿腳退行步到,人眼著地觀測到島峰,、三點也共線,山峰的高度__________步.(古制尺,步)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設L為曲線Cy在點(1,0)處的切線.

(1)L的方程;

(2)證明:除切點(1,0)之外,曲線C在直線L的下方.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)求函數(shù)的單調區(qū)間;

2)若方程有兩個相異實根,,且,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】簡陽羊肉湯已入選成都市級非遺項目,成為簡陽的名片。當初向各地作了廣告推廣,同時廣告對銷售收益也有影響。在若干地區(qū)各投入4萬元廣告費用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從0開始計數(shù)的.

(Ⅰ)根據(jù)頻率分布直方圖,計算圖中各小長方形的寬度;

(Ⅱ)根據(jù)頻率分布直方圖,估計投入4萬元廣告費用之后,并將各地銷售收益的平均值(以各組的區(qū)間中點值代表該組的取值);

(Ⅲ)按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到下表:

廣告投入x(單位:萬元)

1

2

3

4

5

銷售收益y(單位:百萬元)

2

3

2

7

表中的數(shù)據(jù)顯示,之間存在線性相關關系,請將(Ⅱ)的結果填入空白欄,并計算關于的回歸方程.回歸直線的斜率和截距的最小二乘估計公式分別為 ,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(1)求過點且在兩個坐標軸上截距相等的直線方程。

(2)已知圓心為的圓經過點,且圓心在直線上,求圓心為的圓的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大學開設甲、乙、丙三門選修課,學生是否選修哪門課互不影響,已知某學生只選修甲的概率為0.08,只選修甲和乙的概率是0.12,至少選修一門的概率是0.88,用表示該學生選修的課程門數(shù)和沒有選修的課程門數(shù)的乘積.

(1函數(shù)上的偶函數(shù)為事件,求事件的概率;

(2)求的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案