精英家教網 > 高中數學 > 題目詳情

【題目】簡陽羊肉湯已入選成都市級非遺項目,成為簡陽的名片。當初向各地作了廣告推廣,同時廣告對銷售收益也有影響。在若干地區(qū)各投入4萬元廣告費用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數據丟失,但可以確定橫軸是從0開始計數的.

(Ⅰ)根據頻率分布直方圖,計算圖中各小長方形的寬度;

(Ⅱ)根據頻率分布直方圖,估計投入4萬元廣告費用之后,并將各地銷售收益的平均值(以各組的區(qū)間中點值代表該組的取值);

(Ⅲ)按照類似的研究方法,測得另外一些數據,并整理得到下表:

廣告投入x(單位:萬元)

1

2

3

4

5

銷售收益y(單位:百萬元)

2

3

2

7

表中的數據顯示,之間存在線性相關關系,請將(Ⅱ)的結果填入空白欄,并計算關于的回歸方程.回歸直線的斜率和截距的最小二乘估計公式分別為 ,

【答案】(Ⅰ);(Ⅱ);

(Ⅲ)空白欄中填5.

【解析】試題分析:(Ⅰ)由頻率分布直方圖知,小長方形面積為對應區(qū)間概率,所有小長方形面積之和為1,據此列方程解出各小長方形的寬度,(Ⅱ)根據平均數為各區(qū)間組中值與概率乘積之和可計算平均數,(Ⅲ)先計算廣告投入以及銷售收益平均數,再代入相關公式求,根據回歸方程過,解出.

試題解析:(Ⅰ)設各小長方形的寬度為,由頻率分布直方圖各小長方形面積總和為1,可知,故;

(Ⅱ)由(Ⅰ)知各小組依次是,

其中點分別為,對應的頻率分別為,

故可估計平均值為

(Ⅲ)空白欄中填5.

由題意可知,,,

,,

根據公式,可求得,,

即回歸直線的方程為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,已知圓過坐標原點且圓心在曲線上.

(1)若圓分別與軸、軸交于點、(不同于原點),求證:的面積為定值;

(2)設直線與圓交于不同的兩點,且,求圓的方程;

(3)設直線(2)中所求圓交于點, 為直線上的動點,直線,與圓的另一個交點分別為,,且,在直線異側,求證:直線過定點,并求出定點坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數據x1,x2,x3,…,xn是普通職工n(n≥3,n∈N*)個人的年收入,設這n個數據的中位數為x,平均數為y,方差為z,如果再加上世界首富的年收入xn+1,則這n+1個數據中,下列說法正確的是

A. 年收入平均數大大增大,中位數一定變大,方差可能不變

B. 年收入平均數大大增大,中位數可能不變,方差變大

C. 年收入平均數大大增大,中位數可能不變,方差也不變

D. 年收入平均數可能不變,中位數可能不變,方差可能不變

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓經過點,并且直線平分圓.

)求圓的方程;

)若過點,且斜率為的直線與圓有兩個不同的交點.

)求實數的取值范圍;

)若,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

1時,求函數在點處的切線方程;

2求函數的單調區(qū)間;

3上恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在△ABC中,角A,B,C所對的邊分別為a,b,c,

(1)求角A的大。

(2)若的角平分線, ,求的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,底面是邊長為1的正方形,,,且,的中點.

I)求證:平面;

II)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,正四棱錐 中底面邊長為,側棱PA與底面ABCD所成角的正切值為

(I)求正四棱錐 的外接球半徑;

(II)若 中點,求異面直線 所成角的正切值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】3名志愿者在10月1號至10月5號期間參加社區(qū)服務工作.

(1)若每名志愿者在這5天中任選一天參加社區(qū)服務工作,且各志愿者的選擇互不影響,求3名志愿者恰好連續(xù)3天參加社區(qū)服務工作的概率;

(2)若每名志愿者在這5天中任選兩天參加社區(qū)服務工作,且各志愿者的選擇互不影響,記表示這3名志愿者在10月1號參加社區(qū)服務工作的人數,求隨機變量的分布列.

查看答案和解析>>

同步練習冊答案