【題目】簡陽羊肉湯已入選成都市級非遺項目,成為簡陽的名片。當初向各地作了廣告推廣,同時廣告對銷售收益也有影響。在若干地區(qū)各投入4萬元廣告費用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數據丟失,但可以確定橫軸是從0開始計數的.
(Ⅰ)根據頻率分布直方圖,計算圖中各小長方形的寬度;
(Ⅱ)根據頻率分布直方圖,估計投入4萬元廣告費用之后,并將各地銷售收益的平均值(以各組的區(qū)間中點值代表該組的取值);
(Ⅲ)按照類似的研究方法,測得另外一些數據,并整理得到下表:
廣告投入x(單位:萬元) | 1 | 2 | 3 | 4 | 5 |
銷售收益y(單位:百萬元) | 2 | 3 | 2 | 7 |
表中的數據顯示,與之間存在線性相關關系,請將(Ⅱ)的結果填入空白欄,并計算關于的回歸方程.回歸直線的斜率和截距的最小二乘估計公式分別為 , .
【答案】(Ⅰ);(Ⅱ);
(Ⅲ)空白欄中填5..
【解析】試題分析:(Ⅰ)由頻率分布直方圖知,小長方形面積為對應區(qū)間概率,所有小長方形面積之和為1,據此列方程解出各小長方形的寬度,(Ⅱ)根據平均數為各區(qū)間組中值與概率乘積之和可計算平均數,(Ⅲ)先計算廣告投入以及銷售收益平均數,再代入相關公式求,根據回歸方程過,解出.
試題解析:(Ⅰ)設各小長方形的寬度為,由頻率分布直方圖各小長方形面積總和為1,可知,故;
(Ⅱ)由(Ⅰ)知各小組依次是,
其中點分別為,對應的頻率分別為,
故可估計平均值為;
(Ⅲ)空白欄中填5.
由題意可知,,,
,,
根據公式,可求得,,
即回歸直線的方程為.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知圓過坐標原點且圓心在曲線上.
(1)若圓分別與軸、軸交于點、(不同于原點),求證:的面積為定值;
(2)設直線與圓交于不同的兩點,且,求圓的方程;
(3)設直線與(2)中所求圓交于點、, 為直線上的動點,直線,與圓的另一個交點分別為,,且,在直線異側,求證:直線過定點,并求出定點坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數據x1,x2,x3,…,xn是普通職工n(n≥3,n∈N*)個人的年收入,設這n個數據的中位數為x,平均數為y,方差為z,如果再加上世界首富的年收入xn+1,則這n+1個數據中,下列說法正確的是
A. 年收入平均數大大增大,中位數一定變大,方差可能不變
B. 年收入平均數大大增大,中位數可能不變,方差變大
C. 年收入平均數大大增大,中位數可能不變,方差也不變
D. 年收入平均數可能不變,中位數可能不變,方差可能不變
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓經過點、,并且直線: 平分圓.
(Ⅰ)求圓的方程;
(Ⅱ)若過點,且斜率為的直線與圓有兩個不同的交點.
(ⅰ)求實數的取值范圍;
(ⅱ)若,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,正四棱錐 中底面邊長為,側棱PA與底面ABCD所成角的正切值為.
(I)求正四棱錐 的外接球半徑;
(II)若 是 中點,求異面直線 與 所成角的正切值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】3名志愿者在10月1號至10月5號期間參加社區(qū)服務工作.
(1)若每名志愿者在這5天中任選一天參加社區(qū)服務工作,且各志愿者的選擇互不影響,求3名志愿者恰好連續(xù)3天參加社區(qū)服務工作的概率;
(2)若每名志愿者在這5天中任選兩天參加社區(qū)服務工作,且各志愿者的選擇互不影響,記表示這3名志愿者在10月1號參加社區(qū)服務工作的人數,求隨機變量的分布列.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com