13.某班有54位同學(xué),其中正副班長各1名,現(xiàn)選派6名同學(xué)參加某課外活動小組,在下列情況中,各有多少種不同選法?
(1)無任何條件限制;
(2)正副班長必須入選;
(3)正副班長只有1人入選;
(4)正副班長都不入選;
(5)正副班長至少有1人入選;
(6)正副班長至多有1人入選
(7)班長及以外的某3人不入選.

分析 (1)根據(jù)題意分析可得,選6人參加課外小組,無順序,是組合問題;
(2)若正副班長必須入選,只需在其他52中任選4人參加課外小組即可,由組合數(shù)公式計(jì)算可得答案;
(3)正、副班長2人中選1人有C21,再從除班長以外的52人中選5人即可;(4)正副班長都不入選,從除正副班長以外的52人中選6人即可,;
(5)正、副班長1人入選或2人入選,;
(6)只有一個班長入選或兩個班長都不入選;
(7)除班長以外的某3人,剩下49人,中選6人即可.

解答 解:(1)選6人參加課外小組,無順序,是組合問題,共有C546種;
(2)正、副班長入選,再從除班長以外的52人中選4人即可,共有C524種;
(3)正、副班長2人中選1人有C21,再從除班長以外的52人中選5人即可,共有C21C525種;
(4)正副班長都不入選,從除正副班長以外的52人中選6人即可,共有C526種;
(5)正、副班長1人入選或2人入選,故共有C21C525+C22C524種;
(6)只有一個班長入選或兩個班長都不入選,故共有C21C525+C20C526種;
(7)除班長及以外的某3人,剩下49人,中選6人即可,共有C496種.

點(diǎn)評 本題考查排列、組合知識的運(yùn)用,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.把長為12cm的細(xì)鐵絲截成兩段,各自圍成一個正三角形,求這兩個正三角形面積之和S的值域(S單位:cm2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)a>|b|,且b<0,則( 。
A.a+b>0B.a+b<0C.|a|<|b|D.b-a>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)f(x)=($\frac{a}{x}+x$)9(a為常數(shù))
(1)已知($\frac{a}{x}+x$)9的展開式中x3的系數(shù)為$\frac{21}{16}$,求a的值;
(2)是否存在a,使當(dāng)x>0時,f(x)≥64恒成立,若存在求出a,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列函數(shù)中,最小正周期為π,且在區(qū)間[-$\frac{π}{4}$,0]上為增函數(shù)的是(  )
A.y=cos2xB.y=-sin2xC.y=cos$\frac{x}{2}$D.y=-sin$\frac{x}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知a>0且a≠1,若關(guān)于x的不等式logax>x有解,則a的取值范圍是( 。
A.(0,1)B.(0,1)∪(1,${e}^{\frac{1}{e}}$)C.(1,${e}^{\frac{1}{e}}$)D.(0,1)∪(1,e)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.(1)指出在[0,2π]上,正弦函數(shù)y=sinx的增區(qū)間;
(2)指出在[0,2π]上,正余弦函數(shù)y=cosx的增區(qū)間;
(3)指出在[0,2π]上,正弦函數(shù)、余弦函數(shù)同為增函數(shù)的區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在數(shù)列{an}}中,a1=3,an+1=3an ,在數(shù)列{bn}}中,b1=3,bn=4bn+1+3.
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)設(shè)數(shù)列{cn}滿足cn=an log2(bn +1),其前n項(xiàng)和為Tn ,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.求函數(shù)y=-x2+4x+6,x∈(-1,4]的值域.

查看答案和解析>>

同步練習(xí)冊答案