分析 (Ⅰ)求出函數(shù)f(x)的導(dǎo)數(shù),利用在x=1處的切線斜率為2,列出方程即可求實數(shù)a;
(Ⅱ)通過a=1,求出函數(shù)的導(dǎo)數(shù),判斷函數(shù)的單調(diào)性以及函數(shù)的極值,然后求解函數(shù)的最值以及x的值.
解答 解:(Ⅰ)函數(shù)f(x)=x3-3ax
∴f′(x)=3x2-3a…(2分)
因為函數(shù)f(x)在x=1處的切線斜率為2,
∴f′(1)=3-3a=2,
∴a=$\frac{1}{3}$…(4分).
(Ⅱ)由a=1,得:函數(shù)f(x)=x3-3x…(5分)
則:f′(x)=3x2-3=3(x+1)(x-1)…(7分)
令f′(x)=0,則x=1或x=-1…(8分)
x | 0 | (0,1) | 1 | (1,3) | 3 |
f′(x) | - | 0 | + | ||
f(x) | 0 | 單調(diào)遞減 | 極小值-2 | 單調(diào)遞增 | 18 |
點評 本題考查函數(shù)的導(dǎo)數(shù)的應(yīng)用,切線方程以及函數(shù)的單調(diào)性,函數(shù)的最值的求法,考查計算能力.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 第二、四象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com