4.已知等差數(shù)列{an}的公差為-2,且a2,a4,a5成等比數(shù)列,則a2等于( 。
A.-4B.-6C.-8D.8

分析 根據(jù)等差數(shù)列與等比數(shù)列的通項公式與性質(zhì),列出方程,求出且a2的值.

解答 解:等差數(shù)列{an}的公差為-2,且a2,a4,a5成等比數(shù)列,
∴${{a}_{4}}^{2}$=a2•a5
即${{(a}_{2}-4)}^{2}$=a2•(a2-6),
解得a2=8.
故選:D.

點評 本題考查了等差與等比數(shù)列的通項公式與應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=-x|x-a|+1(x∈R).
(Ⅰ)當(dāng)a=1時,求使f(x)=x成立的x的值;
(Ⅱ)當(dāng)a∈(0,3),求函數(shù)y=f(x)在x∈[1,2]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.復(fù)數(shù)a+bi與m+ni的積是實數(shù)的充要條件是(  )
A.am+bn=0B.an+bm=0C.am=bnD.ab=mn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.因發(fā)生意外交通事故,一輛貨車上的某種液體泄漏到一漁塘中.為了治污,根據(jù)環(huán)保部門的建議,現(xiàn)決定在漁塘中投放一種可與污染液體發(fā)生化學(xué)反應(yīng)的藥劑.已知每投放a(1≤a≤4,且a∈R)個單位的藥劑,它在水中釋放的濃度y(克/升)隨著時間x(天)變化的函數(shù)關(guān)系式近似為y=a•f(x),其中f(x)=$\left\{\begin{array}{l}{\frac{16}{8-x}-1(0≤x≤4)}\\{5-\frac{1}{2}(4<x≤10)}\end{array}\right.$.若多次投放,則某一時刻水中的藥劑濃度為每次投放的藥劑在相應(yīng)時刻所釋放的濃度之和.根據(jù)經(jīng)驗,當(dāng)水中藥劑的濃度不低于4(克/升)時,它才能起到有效治污的作用.
(Ⅰ)若一次投放4個單位的藥劑,則有效治污時間可達(dá)幾天?
(Ⅱ)若第一次投放2個單位的藥劑,6天后再投放a個單位的藥劑,要使接下來的4天中能夠持續(xù)有效治污,試求a的最小值(精確到0.1,參考數(shù)據(jù):$\sqrt{2}$取1.4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在銳角△ABC中,角A、B、C所對的邊分別是a、b、c,O為△ABC的外心.
(1)若b=2,求$\overrightarrow{AC}•\overrightarrow{AO}$的值;
(2)已知${S_{△ABC}}=\frac{3}{2}\sqrt{3}$,b=2,c=3,求$\overrightarrow{OB}•\overrightarrow{OC}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)函數(shù)f(x)=Asin(ωx+φ),(A≠0,ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的圖象關(guān)于直線x=$\frac{2π}{3}$對稱,它的周期是π,則( 。
A.f(x)的圖象過點(0,$\frac{1}{2}$)B.f(x)在$[{\frac{π}{12},\frac{2π}{3}}]$上是減函數(shù)
C.f(x)的一條對稱軸方程為x=-$\frac{π}{12}$D.f(x)的一個對稱中心是$({\frac{5π}{12},0})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若變量x,y滿足約束條件$\left\{\begin{array}{l}{x+y≥-1}\\{2x-y≤1}\\{y≤1}\end{array}\right.$,則z=3x-y的最小值為-7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知平面向量$\overrightarrow{a}$=(3,1),$\overrightarrow b=(x,-3)$,且$\vec a⊥\vec b$,則x=( 。
A.-3B.-1C.3D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)函數(shù)f(x)=xlnx-ax2
(1)若曲線y=f(x)過點P(1,-1),求曲線在點P處的切線方程;
(2)若f(x)在(0,+∞)上為減函數(shù),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案