6.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點(diǎn)為F1,P為左支上一點(diǎn),|PF1|=a,P0與P關(guān)于原點(diǎn)對(duì)稱,且$\overrightarrow{{P}_{0}{F}_{1}}$$•\overrightarrow{P{F}_{1}}$=0.則雙曲線的漸近線方程為( 。
A.y=±xB.y=$±\frac{\sqrt{6}}{2}$xC.y=$±\frac{\sqrt{3}}{2}$xD.y=±2x

分析 根據(jù)雙曲線的定義結(jié)合直角三角形的邊角關(guān)系進(jìn)行求解即可.

解答 解:設(shè)雙曲線的右焦點(diǎn)為F2
則由對(duì)稱性知,|P0F2|=|PF1|=a,
則|P0F1|-|P0F2|=2a,
即|P0F1|=3a,
∵$\overrightarrow{{P}_{0}{F}_{1}}$$•\overrightarrow{P{F}_{1}}$=0,∴P0F1⊥PF1,即P0F1⊥P0F2,
則4c2=(3a)2+a2=10a2=4(a2+b2
即3a2=2b2
則$\frac{^{2}}{{a}^{2}}$=$\frac{3}{2}$,即$\frac{a}$=$\frac{\sqrt{6}}{2}$,
即雙曲線的漸近線方程為y=$±\frac{\sqrt{6}}{2}$x,
故選:B.

點(diǎn)評(píng) 本題主要考查雙曲線漸近線的求解,根據(jù)向量垂直以及雙曲線的定義進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知直線m,n與平面α,β,下列命題中錯(cuò)誤的是(  )
A.若m⊥α,n⊥α,則m∥nB.若m⊥β,n∥β,則m⊥n
C.若m⊥α,n⊥β,α⊥β,則m⊥nD.若m∥n,n?α,則m∥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知集合M={x|lnx>0},N={x|x2≤4},則M∩N=( 。
A.(1,2]B.[1,2)C.(1,2)D.[1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.若雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)上存在四個(gè)不同的點(diǎn)A、B、C、D,使四邊形ABCD為菱形,則$\frac{a}$的取值范圍為$\frac{a}$>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)與圓E:x2+y2-y-2=0在第一象限相交于點(diǎn)P,橢圓C的左、右焦點(diǎn)F1,F(xiàn)2都在圓E上,且線段PF1為圓E的直徑.
(1)求橢圓C的方程;
(2)設(shè)直線l與橢圓C相交于A,B兩點(diǎn),且直線l與y軸相交于D點(diǎn),M為線段AB的中點(diǎn),O為坐標(biāo)原點(diǎn),若$\overrightarrow{OM}$•$\overrightarrow{OD}$=1,求|OM|•|AB|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.若一個(gè)球的半徑與它的內(nèi)接圓錐的底面半徑之比為$\frac{5}{3}$,且內(nèi)接圓錐的軸截面為銳角三角形,則該球的體積與它的內(nèi)接圓錐的體積之比等于$\frac{500}{81}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若數(shù)列{an}滿足:an+1+(-1)nan=n(n∈N*),則a1+a2+…+a100=2550.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知雙曲線的漸近線方程為y=±$\frac{3}{4}$x,其圖象過(guò)點(diǎn)(4,3$\sqrt{2}}$),F(xiàn)1,F(xiàn)2是其兩個(gè)焦點(diǎn),若雙曲線上的點(diǎn)P滿足|PF1|=7,則|PF2|=13.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知函數(shù)f(x)=-$\sqrt{\frac{1}{{x}^{2}}+4}$(x>0),在數(shù)列{an}中,a1=1,$\frac{1}{{a}_{n+1}}$=-f(an),n∈N*,設(shè)bn=$\frac{{a}_{n}•{a}_{n+1}}{{a}_{n}+{a}_{n+1}}$,數(shù)列{bn}的前n項(xiàng)和為Tn,則T20=2.

查看答案和解析>>

同步練習(xí)冊(cè)答案