11.若一個(gè)球的半徑與它的內(nèi)接圓錐的底面半徑之比為$\frac{5}{3}$,且內(nèi)接圓錐的軸截面為銳角三角形,則該球的體積與它的內(nèi)接圓錐的體積之比等于$\frac{500}{81}$.

分析 設(shè)球的半徑為5,圓錐底面半徑為3,則圓錐的高為9,代入體積公式計(jì)算即可得出比值.

解答 解:設(shè)球的半徑為5,則圓錐的底面半徑為3,∴球心到圓錐底面的距離為$\sqrt{{5}^{2}-{3}^{2}}$=4.
∵內(nèi)接圓錐的軸截面為銳角三角形,∴圓錐的高為4+5=9.
∴V=$\frac{4}{3}π×{5}^{3}=\frac{500π}{3}$,V圓錐=$\frac{1}{3}π×{3}^{2}×9$=27π.
∴V:V圓錐=$\frac{500π}{3}:$27π=$\frac{500}{81}$.
故答案為:$\frac{500}{81}$.

點(diǎn)評(píng) 本題考查了圓錐與外接球的關(guān)系,旋轉(zhuǎn)體的體積計(jì)算,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知M為△ABC內(nèi)一點(diǎn),$\overrightarrow{AM}$=$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{1}{4}$$\overrightarrow{AC}$,則△ABM和△ABC的面積之比為( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.如果實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{2x-y≥0}\\{x+y-4≥0}\\{x≤3}\end{array}\right.$,則z=x2+y2-2x的最小值是( 。
A.3B.$\frac{7}{2}$C.4D.$\frac{9}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知橢圓$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0)的離心率為e,直線l:y=x+1經(jīng)過(guò)橢圓C的一個(gè)焦點(diǎn),點(diǎn)(1,1)關(guān)于直線l的對(duì)稱點(diǎn)也在橢圓C上,則$\frac{2e}{{m}^{2}+1}$+m2的最小值為( 。
A.1B.$\sqrt{2}$C.2$\sqrt{2}$-1D.均不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點(diǎn)為F1,P為左支上一點(diǎn),|PF1|=a,P0與P關(guān)于原點(diǎn)對(duì)稱,且$\overrightarrow{{P}_{0}{F}_{1}}$$•\overrightarrow{P{F}_{1}}$=0.則雙曲線的漸近線方程為( 。
A.y=±xB.y=$±\frac{\sqrt{6}}{2}$xC.y=$±\frac{\sqrt{3}}{2}$xD.y=±2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=$|\begin{array}{l}{m}&{cos2x}\\{n}&{sin2x}\end{array}|$的圖象過(guò)點(diǎn)$(\frac{π}{12},\sqrt{3})$和點(diǎn)$(\frac{2π}{3},-2)$.
(1)求函數(shù)f(x)的最大值與最小值;
(2)將函數(shù)y=f(x)的圖象向左平移φ(0<φ<π)個(gè)單位后,得到函數(shù)y=g(x)的圖象;已知點(diǎn)P(0,5),若函數(shù)y=g(x)的圖象上存在點(diǎn)Q,使得|PQ|=3,求函數(shù)y=g(x)圖象的對(duì)稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知三角形的三邊之比為3:4:$\sqrt{37}$,則最大內(nèi)角為$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.植樹(shù)節(jié)期間我市組織義工參加植樹(shù)活動(dòng),為方便安排任務(wù)將所有義工按年齡分組:第l組[25,30),第2組[30,35),第3組[35,40),第4組[40,45),第5組[45,50],得到的部分頻率分布表如下:
區(qū)間人數(shù)頻率
第1組[25,30)500.1
第2組[30,35)500.1
第3組[35,40)a0.4
第4組[40,45)150b
(1)求a,b的值;
(2)現(xiàn)在要從年齡較小的第l,2,3組中用分層抽樣的方法隨機(jī)抽取6人擔(dān)任聯(lián)系人,在第l,2,3組抽取的義工的人數(shù)分別是多少?
(3)在(2)的條件下,從這6人中隨機(jī)抽取2人擔(dān)任本次活動(dòng)的宣傳員,求至少有1人年齡在第3組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足a1=1,an+2=1+$\frac{1}{{a}_{n}}$(n∈N*),若a2014=a2016,則a13+a2016=$\frac{21}{13}$+$\frac{1+\sqrt{5}}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案