分析 根據(jù)題目所給出的五角形數(shù)的前幾項,發(fā)現(xiàn)該數(shù)列的特點是,從第二項起,每一個數(shù)與前一個數(shù)的差構(gòu)成了一個等差數(shù)列,由此可得結(jié)論.
解答 解:a2-a1=5-1=4,
a3-a2=12-5=7,
a4-a3=22-12=10,…,
由此可知數(shù)列{an+1-an}構(gòu)成以4為首項,以3為公差的等差數(shù)列.
所以an-an-1=3(n-1)+1=3n-2(n≥2)
迭加得:an-a1=4+7+10+…+3n-2,
故an=1+4+7+10+…+3n-2=$\frac{3{n}^{2}-n}{2}$,
故答案為:3n-2,$\frac{3{n}^{2}-n}{2}$
點評 本題考查了等差數(shù)列的判斷,考查學(xué)生分析解決問題的能力,解答此題的關(guān)鍵是能夠由數(shù)列的前幾項分析出數(shù)列的特點,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{16}{3}$ | B. | 16 | C. | 32 | D. | $\frac{32}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com