8.已知兩個(gè)單位向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$的夾角為60°,若$\overrightarrow{a}$=2$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,則$\overrightarrow{a}$在$\overrightarrow{a}$-2$\overrightarrow{{e}_{1}}$方向上的投影為2.

分析 由已知得到$\overrightarrow{a}$-2$\overrightarrow{{e}_{1}}$=$\overrightarrow{{e}_{2}}$,然后利用向量在向量方向上的投影公式求得答案.

解答 解:∵$\overrightarrow{a}$=2$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,∴$\overrightarrow{a}$-2$\overrightarrow{{e}_{1}}$=$\overrightarrow{{e}_{2}}$,
又向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$為單位向量且?jiàn)A角為60°,
∴$\overrightarrow{a}$在$\overrightarrow{a}$-2$\overrightarrow{{e}_{1}}$方向上的投影為:
$\frac{\overrightarrow{a}•(\overrightarrow{a}-2\overrightarrow{{e}_{1}})}{|\overrightarrow{a}-2\overrightarrow{{e}_{1}}|}$=$\frac{(2\overrightarrow{{e}_{1}}+\overrightarrow{{e}_{2}})•\overrightarrow{{e}_{2}}}{|\overrightarrow{{e}_{2}}|}$=$2\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}+|\overrightarrow{{e}_{2}}{|}^{2}$=2×1×1×cos60°+1=2.
故答案為:2.

點(diǎn)評(píng) 本題考查平面向量的數(shù)量積運(yùn)算,考查了向量在向量方向上的投影的概念,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知某中學(xué)高三文科班學(xué)生的數(shù)學(xué)與地理的水平測(cè)試成績(jī)抽樣統(tǒng)計(jì)如表,若抽取學(xué)生n人,成績(jī)分為A(優(yōu)秀)、B(良好)、C(及格)三個(gè)等級(jí),設(shè)x,y分別表示數(shù)學(xué)成績(jī)與地理成績(jī).例如:表中地理成績(jī)?yōu)锳等級(jí)的共有14+40+10=64人,已知x與y均為A等級(jí)的概率是0.07.
x
人數(shù)
y
ABC
Al44010
Ba36b
C28834
(Ⅰ)設(shè)在該樣本中,數(shù)學(xué)成績(jī)優(yōu)秀率是30%,求a,b的值;
(Ⅱ)在地理成績(jī)?yōu)锽等級(jí)的學(xué)生中,已知a≥8,b≥6,求數(shù)學(xué)成績(jī)?yōu)锳等級(jí)的人數(shù)比C等級(jí)的人數(shù)多的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.兩千多年前,古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家曾經(jīng)在沙灘上研究數(shù)學(xué)問(wèn)題,他們?cè)谏碁┥袭?huà)點(diǎn)或用小石子來(lái)表示數(shù),按照點(diǎn)或小石子能排列的形狀對(duì)數(shù)進(jìn)行分類(lèi),如圖中的實(shí)心點(diǎn)個(gè)數(shù)1,5,12,22,…,被稱(chēng)為五角形數(shù),其中第1個(gè)五角形數(shù)記作a1=1,第2個(gè)五角形數(shù)記作a2=5,第3個(gè)五角形數(shù)記作a3=12,第4個(gè)五角形數(shù)記作a4=22,…,若按此規(guī)律繼續(xù)下去,得數(shù)列{an},則an-an-1=3n-2(n≥2);對(duì)n∈N*,an=$\frac{3{n}^{2}-n}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知圓${C_1}:{(x+3)^2}+{(y-4)^2}=4$和兩點(diǎn)A(0,8-m),B(0,8+m)(m>0),若圓C1上存在點(diǎn)P,使得∠APB=90°,則m的最大值為(  )
A.3B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知函數(shù)f(x)=$\frac{{x}^{2}+3x+sin2x}{{x}^{2}}$(x≠0),若f(m)=1.則f(-m)=( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=ax2+bx+c(a≠0),且f(-1+x)=f(-1-x),f(0)=1,f(-1)=0,令g(x)=ln(x-1)2-f(x).
(1)求函數(shù)f(x)的表達(dá)式及函數(shù)g(x)的單調(diào)區(qū)間;
(2)關(guān)于x的方程g(x)=-x2-x-1-a在[0,2]上恰有兩個(gè)不等的實(shí)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知數(shù)列{an}的前n項(xiàng)和Sn=n2(n∈N*).
(1)求數(shù)列{$\frac{1}{{{a_n}•{a_{n+1}}}}$}的前10項(xiàng)和T10;
(2)設(shè)bn=$({a_n}+1)•{2^{a_n}}$,求數(shù)列{bn}的前n項(xiàng)和Gn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知兩個(gè)單位向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$的夾角為150°,$\overrightarrow{a}$=2$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$,則|$\overrightarrow{a}$-2$\overrightarrow{{e}_{2}}$|=$\sqrt{5-2\sqrt{3}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知二次函數(shù)f(x)=-$\frac{1}{2}$x2+$\frac{13}{2}$在區(qū)間[a,b]上的值域?yàn)閇2a,2b],求a,b值.

查看答案和解析>>

同步練習(xí)冊(cè)答案