12.已知函數(shù)f(x)=mlnx+x2.(m為常數(shù))
(Ⅰ)當(dāng)x∈[1,e]時(shí),求函數(shù)y=f(x)的零點(diǎn)個(gè)數(shù);
(Ⅱ)是否存在正實(shí)數(shù)m,使得對(duì)任意x1、x2∈[1,e],都有$|{f({x_1})-f({x_2})}|≤|{\frac{1}{x_1}-\frac{1}{x_2}}|$,若存在,求出實(shí)數(shù)m的取值范圍;若不存在,請(qǐng)說明理由.

分析 (Ⅰ)可求導(dǎo)數(shù),$f′(x)=\frac{2{x}^{2}+m}{x}$,從而看出需討論m,判斷f′(x)的符號(hào):m≥0時(shí),顯然無零點(diǎn);m<0時(shí),需討論$\sqrt{-\frac{m}{2}}≤1,\sqrt{-\frac{m}{2}}≥e$,以及$1<\sqrt{-\frac{m}{2}}<e$這幾種情況,通過對(duì)f(x)在[1,e]上單調(diào)性和端點(diǎn)f(1),f(e)的符號(hào),及對(duì)f(x)在[1,e]上最小值的符號(hào)的判斷,從而可判斷f(x)在[1,e]上零點(diǎn)的個(gè)數(shù);
(Ⅱ)由上面知,m>0時(shí),f(x)在[1,e]上單調(diào)遞增,可設(shè)1≤e1≤e2≤e,則可得到$f({x}_{2})+\frac{1}{{x}_{2}}≤f({x}_{1})+\frac{1}{{x}_{1}}$,從而說明$g(x)=f(x)+\frac{1}{x}$在[1,e]上單調(diào)遞減,從而有$g′(x)=\frac{m}{x}+2x-\frac{1}{{x}^{2}}≤0$在[1,e]上恒成立,這樣便可求出m<0,從而說明滿足條件的正實(shí)數(shù)m不存在.

解答 解:由f(x)=mlnx+x2得x>0,$f'(x)=\frac{m}{x}+2x=\frac{{2{x^2}+m}}{x}$;
(Ⅰ)(i)若m≥0,f'(x)>0,函數(shù)f(x)=mlnx+x2在[1,e]上為增函數(shù),∵f(1)=1>0;
∴函數(shù)y=f(x)在[1,e]上無零點(diǎn);
(ii)若m<0,由f'(x)=0得,$x=-\sqrt{-\frac{m}{2}}$(舍),$x=\sqrt{-\frac{m}{2}}$;
(1)若$\sqrt{-\frac{m}{2}}≤1$,即-2≤m<0,函數(shù)f(x)=mlnx+x2在[1,e]上為增函數(shù);
∵f(1)=1>0,∴函數(shù)y=f(x)在[1,e]上無零點(diǎn);
(2)若$\sqrt{-\frac{m}{2}}≥e$,即m≤-2e2,f'(x)<0,函數(shù)f(x)=mlnx+x2在[1,e]上為減函數(shù);
由f(1)=1>0,f(e)=e2+m≤-e2<0;
∴函數(shù)y=f(x)在[1,e]上有一個(gè)零點(diǎn);
(3)若$1<\sqrt{-\frac{m}{2}}<e$,即-2e2<m<-2,函數(shù)f(x)在$[{1,\sqrt{-\frac{m}{2}}}]$上為減函數(shù),在$[{\sqrt{-\frac{m}{2}},e}]$上為增函數(shù);
f(1)=1>0,f(e)=e2+m,$f{(x)_{min}}=f(\sqrt{-\frac{m}{2}})=\frac{m}{2}[{ln(-\frac{m}{2})-1}]$;
①當(dāng)$-\frac{m}{2}<e$,即-2e<m<-2時(shí),$f(\sqrt{-\frac{m}{2}})=\frac{m}{2}[{ln(-\frac{m}{2})-1}]>0$,函數(shù)y=f(x)無零點(diǎn);
②當(dāng)$-\frac{m}{2}=e$,即m=-2e時(shí),函數(shù)y=f(x)在[1,e]上有一個(gè)零點(diǎn);
③當(dāng)$\left\{{\begin{array}{l}{f(\sqrt{-\frac{m}{2}})<0}\\{f(e)={e^2}+m<0}\end{array}}\right.$時(shí),即-2e2<m<-e2,函數(shù)y=f(x)在[1,e]上有一個(gè)零點(diǎn);
④當(dāng)$\left\{{\begin{array}{l}{f(\sqrt{-\frac{m}{2}})<0}\\{f(e)={e^2}+m>0}\end{array}}\right.$時(shí),即-e2<m<-2e,函數(shù)y=f(x)在[1,e]上有兩個(gè)零點(diǎn);
綜上:當(dāng)m>-2e時(shí),函數(shù)y=f(x)在[1,e]上無零點(diǎn);當(dāng)m<-e2時(shí),函數(shù)y=f(x)在[1,e]上有一個(gè)零點(diǎn);當(dāng)-e2<m<-2e時(shí),函數(shù)y=f(x)在[1,e]上有兩個(gè)零點(diǎn);
(Ⅱ)滿足條件的m不存在;
若m>0,由(Ⅰ)可知,函數(shù)f(x)=mlnx+x2在[1,e]上為增函數(shù);
不妨設(shè)1≤x1≤x2≤e,則$|{f({x_1})-f({x_2})}|≤|{\frac{1}{x_1}-\frac{1}{x_2}}|$,即$f({x_2})+\frac{1}{x_2}≤f({x_1})+\frac{1}{x_1}$;
由此說明$g(x)=f(x)+\frac{1}{x}$在[1,e]上單調(diào)遞減,$g'(x)=\frac{m}{x}+2x-\frac{1}{x^2}≤0$在[1,e]上恒成立;
即$m≤-2{x^2}+\frac{1}{x}$對(duì)x∈[1,e]恒成立;
又$y=-2{x^2}+\frac{1}{x}$在[1,e]上單調(diào)遞減;
∴$m≤-2{e^2}+\frac{1}{e}$,此時(shí)m<0;
故滿足條件的正實(shí)數(shù)m不存在.

點(diǎn)評(píng) 考查根據(jù)導(dǎo)數(shù)符號(hào)判斷函數(shù)單調(diào)性的方法,函數(shù)零點(diǎn)的概念及判斷零點(diǎn)是否存在的方法,以及函數(shù)單調(diào)性的定義,根據(jù)導(dǎo)數(shù)符號(hào)求函數(shù)在閉區(qū)間上最值的方法,以及對(duì)數(shù)函數(shù)的單調(diào)性.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)$f(x)=-\frac{1}{2}a{x^2}+(1+a)x-lnx(a∈R)$.
(Ⅰ)當(dāng)a>0時(shí),求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)當(dāng)a=0時(shí),設(shè)函數(shù)g(x)=xf(x)-k(x+2)+2.若函數(shù)g(x)在區(qū)間$[\frac{1}{2},+∞)$上有兩個(gè)零點(diǎn),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.f(x)=$\frac{2x+1}{x-a}$在區(qū)間(1,+∞)上為減函數(shù),則實(shí)數(shù)a的取值范圍是($-\frac{1}{2}$,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知x1,x2(x1<x2)是方程4x2-4kx-1=0(k∈R)的兩個(gè)不等實(shí)根,函數(shù)f(x)=$\frac{2x-k}{{x}^{2}+1}$的定義域?yàn)閇x1,x2],g(k)=f(x)min-f(x)max,若對(duì)任意k∈R,恒有g(shù)(k)≤a$\sqrt{1+{k}^{2}}$成立,則實(shí)數(shù)a的取值范圍是a≥-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{x+\frac{1}{2},x∈[0,\frac{1}{2})}\\{{2^{x-1}},x∈[\frac{1}{2},2)}\end{array}}\right.$,若存在x1,x2,當(dāng)0≤x1<x2<2時(shí),f(x1)=f(x2),則x1f(x2)-f(x2)的取值范圍為(  )
A.$(0,\frac{{2-3\sqrt{2}}}{4})$B.$[-\frac{9}{16},\frac{{2-3\sqrt{2}}}{4})$C.$[\frac{{2-3\sqrt{2}}}{4},-\frac{1}{2})$D.$[-\frac{9}{16},-\frac{1}{2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.執(zhí)行如圖的程序框圖,若輸入?=0.01,則輸出的N=( 。
A.102B.101C.100D.99

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)集合M={x|$\frac{1}{2}≤x<3$},函數(shù)f(x)=ln(1-$\sqrt{x}$)的定義域?yàn)镹,則M∩N為(  )
A.[$\frac{1}{2}$,1]B.[$\frac{1}{2}$,1)C.(0,$\frac{1}{2}$]D.(0,$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知復(fù)數(shù)$z=\frac{2i}{1-i}$,則|z|=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.身高都不相等的10人排成人數(shù)相等的兩列,每列從前到后按高矮次序排列,則共有不同的排隊(duì)方法種數(shù)252種.

查看答案和解析>>

同步練習(xí)冊(cè)答案