如圖,在三棱錐A-BCD中,E,F(xiàn)分別是AB,CD的中點(diǎn),試比較EF和
1
2
(AD+BC)的大小,并證明你的結(jié)論.
考點(diǎn):點(diǎn)、線、面間的距離計(jì)算
專(zhuān)題:空間位置關(guān)系與距離
分析:取AC的中點(diǎn)G,連接GE,GF,GE是△ABC的中位線,GF是△ACD的中位線,在△GEF中,由三角形三邊關(guān)系可得:GE+GF>EF.
解答: 解:如圖所示,取AC的中點(diǎn)G,連接GE,GF,
∴GE是△ABC的中位線;GF是△ACD的中位線
∴DE=
1
2
BC,GF=
1
2
AD,
∴GE+GF=
1
2
(AD+BC),
在△GEF中,由三角形三邊關(guān)系可得:
GE+GF>EF
1
2
(AD+BC)>EF.
點(diǎn)評(píng):本題考查線段長(zhǎng)的比較,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,PD⊥底面ABCD,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,BC=
1
2
AD=1,PD=CD=2,Q為AD的中點(diǎn),M為PC的中點(diǎn).
(Ⅰ)證明:PA∥平面BMQ;
(Ⅱ)求三棱錐A-BMQ的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:集合A={x|x2-2x-3<0},B={x|
1
2
<2x-1<8},C={x|2x2+mx-m2<0}(m∈R).
(1)求:A∪B;
(2)若(A∪B)⊆C,求:實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ex(x2+ax+b)在點(diǎn)(0,f(0))處的切線方程為6x+y+4=0.
(Ⅰ)求函數(shù)f(x)的解析式及單調(diào)區(qū)間;
(Ⅱ)若方程f(x)=k(k∈R)有三個(gè)實(shí)根,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示幾何體是正方體ABCD-A1B1C1D1截去三棱錐B1-A1BC1后所得,點(diǎn)M為A1C1的中點(diǎn).
(1)求證:A1C1⊥平面MBD;
(2)當(dāng)正方體棱長(zhǎng)等于
3
時(shí),求三棱錐D-A1BC1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將函數(shù)y=3sin(2x+φ),|φ|<
π
2
的圖象向左平移
π
3
個(gè)得到偶函數(shù)y=f(x)的圖象.
(1)求y=f(x)解析式;
(2)求y=f(x)的最大值及單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2
sin2x+
2
cos2x.
(1)求函數(shù)f(x)最大值和單調(diào)增區(qū)間;
(2)已知△ABC外接圓半徑R=
3
,f(
A
2
-
π
8
)+f(
B
2
+
π
8
)=4
6
sinAsinB,角A,B所對(duì)的邊分別是a,b,求a+b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若cos(
π
3
-2x)=-
7
8
,sin2(x+
π
3
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
x2+11
x2+9
的最小值
 

查看答案和解析>>

同步練習(xí)冊(cè)答案