A. | (0,1) | B. | (1,2) | C. | (2,3) | D. | (3,4) |
分析 令f(x)-g(x)=$\frac{1}{{3}^{x}}$+x-3,從而可判斷f(2)-g(2)=$\frac{1}{9}$-1<0,f(3)-g(3)=$\frac{1}{27}$>0,從而解得.
解答 解:令f(x)-g(x)=$\frac{1}{{3}^{x}}$+x-3,
f(2)-g(2)=$\frac{1}{9}$-1<0,f(3)-g(3)=$\frac{1}{27}$>0,
故(f(2)-g(2))(f(3)-g(3))<0,
故x0所在的區(qū)間為(2,3),
故選:C.
點(diǎn)評 本題考查了函數(shù)的零點(diǎn)的判定定理的應(yīng)用及數(shù)形結(jié)合的思想應(yīng)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | $\frac{π^2}{9}-\frac{1}{2}$ | C. | $\frac{{2{π^2}}}{9}-1$ | D. | $\frac{{2{π^2}}}{9}+1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{A_3^3C_{10}^1C_{20}^1C_{970}^1}}{{{{(C_{1000}^3)}^3}}}$ | |
B. | $\frac{{A_3^3C_{10}^1C_{20}^1C_{970}^1}}{{{{(C_{1000}^1)}^3}}}$ | |
C. | $\frac{{A_3^3C_{10}^1C_{20}^1C_{970}^1}}{{C_{1000}^3}}$ | |
D. | $\frac{{A_3^3C_{10}^1C_{20}^1C_{970}^1}}{{A_{1000}^3}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | -2 | C. | 3 | D. | -3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com