15.設(shè)函數(shù)$f(x)={({\frac{1}{3}})^x}$與g(x)=3-x的圖象的交點(diǎn)為( x0,y0 ),則x0所在的區(qū)間為(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

分析 令f(x)-g(x)=$\frac{1}{{3}^{x}}$+x-3,從而可判斷f(2)-g(2)=$\frac{1}{9}$-1<0,f(3)-g(3)=$\frac{1}{27}$>0,從而解得.

解答 解:令f(x)-g(x)=$\frac{1}{{3}^{x}}$+x-3,
f(2)-g(2)=$\frac{1}{9}$-1<0,f(3)-g(3)=$\frac{1}{27}$>0,
故(f(2)-g(2))(f(3)-g(3))<0,
故x0所在的區(qū)間為(2,3),
故選:C.

點(diǎn)評(píng) 本題考查了函數(shù)的零點(diǎn)的判定定理的應(yīng)用及數(shù)形結(jié)合的思想應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.定積分(${∫}_{\frac{-π}{3}}^{\frac{π}{3}}$(2x+sinx)dx等于( 。
A.0B.$\frac{π^2}{9}-\frac{1}{2}$C.$\frac{{2{π^2}}}{9}-1$D.$\frac{{2{π^2}}}{9}+1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知數(shù)列{an}的前n項(xiàng)和Sn=2n-1,那么a4的值為( 。
A.1B.2C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.現(xiàn)有1000件產(chǎn)品,甲產(chǎn)品有10件,乙產(chǎn)品有20件,丙產(chǎn)品有970件,現(xiàn)隨機(jī)不放回抽取3件產(chǎn)品,恰好甲乙丙各一件的概率是( 。
A.$\frac{{A_3^3C_{10}^1C_{20}^1C_{970}^1}}{{{{(C_{1000}^3)}^3}}}$
B.$\frac{{A_3^3C_{10}^1C_{20}^1C_{970}^1}}{{{{(C_{1000}^1)}^3}}}$
C.$\frac{{A_3^3C_{10}^1C_{20}^1C_{970}^1}}{{C_{1000}^3}}$
D.$\frac{{A_3^3C_{10}^1C_{20}^1C_{970}^1}}{{A_{1000}^3}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.等邊三角形的邊長(zhǎng)為a,它繞其一邊所在的直線旋轉(zhuǎn)一周,則所得旋轉(zhuǎn)體的表面積為$\sqrt{3}π$a2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=2x(1-x).
(1)在如圖所給直角坐標(biāo)系中畫出函數(shù)f(x)的草圖,并直接寫出函數(shù)f(x)的零點(diǎn);
(2)求出函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.sin43°cos2°+cos43°sin2°的值為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=2$\sqrt{3}sinxcosx+2{cos^2}$x-1(x∈R).
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)若f(x0)=$\frac{6}{5}$,${x_0}∈[{\frac{π}{4},\frac{π}{2}}]$,求cos2x0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知f-1(x)是指數(shù)函數(shù)f(x)的反函數(shù),且f(2)=4,則f-1(8)等于( 。
A.2B.-2C.3D.-3

查看答案和解析>>

同步練習(xí)冊(cè)答案