分析 (1)由條件利用誘導(dǎo)公式化簡f(α),可得結(jié)果.
(2)由條件利用誘導(dǎo)公式求得 sinα 的值,再利用同角三角函數(shù)的基本關(guān)系求得cosα,可得f(α)的值.
(3)利用誘導(dǎo)公式求得f(α)的值.
解答 解:(1)f(α)=$\frac{sin(\frac{π}{2}-α)cos(2π-α)tan(-α+3π)}{tan(π+α)sin(\frac{π}{2}+α)}$=$\frac{cosα•cosα•(-tanα)}{tanα•cosα}$=-cosα.
(2)若α是第三象限角,且cos(α-$\frac{3π}{2}$)=-sinα=$\frac{1}{5}$,即sinα=-$\frac{1}{5}$,∴cosα=-$\sqrt{{1-sin}^{2}α}$=-$\frac{2\sqrt{6}}{5}$,
∴f(α)=-cosα=$\frac{2\sqrt{6}}{5}$.
(3)∵α=-1860°,∴f(α)=-cos(-1860°)=-cos1860°=-cos60°=-$\frac{1}{2}$.
點(diǎn)評(píng) 本題主要考查應(yīng)用誘導(dǎo)公式化簡三角函數(shù)式,要特別注意符號(hào)的選取,這是解題的易錯(cuò)點(diǎn),屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=sin(x+$\frac{π}{6}$) | B. | y=sin(x+$\frac{π}{3}$) | C. | y=sin(4x+$\frac{π}{6}$) | D. | y=sin(4x+$\frac{π}{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=$\sqrt{-2{x}^{3}}$與y=x$\sqrt{-2x}$ | B. | y=($\sqrt{x}$)2與y=|x| | ||
C. | y=$\sqrt{x+2}$•$\sqrt{x-2}$與y=$\sqrt{(x+2)(x-2)}$ | D. | f(x)=x2-2x-1與g(x)=x2-2x-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com