A. | 1 | B. | 2 | C. | 2$\sqrt{2}$ | D. | 4 |
分析 根據(jù)積分的幾何意義即可求出對應(yīng)的面積.
解答 解:由$\left\{\begin{array}{l}{y=2x}\\{y={x}^{3}}\end{array}\right.$得x3=2x,
解得x=0或x=$\sqrt{2}$或x=-$\sqrt{2}$,
則由對稱性可知所求面積S=2${∫}_{0}^{\sqrt{2}}$(2x-x3)dx=2(x2-$\frac{1}{4}$x4)|${\;}_{0}^{\sqrt{2}}$
=2(2-$\frac{1}{4}×4$)=2(2-1)=2,
故選:B
點評 本題主要考查封閉區(qū)域的面積的計算,求出交點坐標,利用積分是解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -5 | B. | 2.5 | C. | 5 | D. | -2.5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3-2ln2}{4}$ | B. | $\frac{1+2ln2}{4}$ | C. | $\frac{3π}{16}$ | D. | $\frac{16-3π}{16}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com