分析 (1)先求出函數(shù)h(x)的導(dǎo)數(shù),從而得到函數(shù)的單調(diào)區(qū)間,進而求出h(x)的極值;
(2)將m=0代入函數(shù)的表達式,x≤0時,顯然成立,x>0時,通過討論函數(shù)的單調(diào)性從而得到結(jié)論.
解答 解:(1)由已知h′(x)=ex(-x+m)+ex(-1)=-ex[x-(m-1)],
令h′(x)=0得x=m-1.由下表
x | (-∞,m-1) | m-1 | (m-1,+∞) |
h′(x) | + | 0 | - |
點評 本題考查了函數(shù)的單調(diào)性、極值問題,考查導(dǎo)數(shù)的應(yīng)用,不等式的大小比較,是一道中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 12 | B. | 24 | C. | 36 | D. | 48 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (x+$\frac{1}{x}$)′=1+$\frac{1}{{x}^{2}}$ | B. | $(\frac{{e}^{x}}{x})′$=$\frac{{e}^{x}+x{e}^{x}}{{x}^{2}}$ | ||
C. | (x2sinx)′=2xcosx | D. | (log2x)′=$\frac{1}{xln2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com