17.一物體以速度v(t)=3t2-2t+3做直線(xiàn)運(yùn)動(dòng),它在t=1到t=3這段時(shí)間內(nèi)的位移是( 。
A.27B.24C.6D.3

分析 由題意可得,物體在t=1和t=3這段時(shí)間內(nèi)的位移是S=${∫}_{1}^{3}$(3t2-2t+3)dt,求解定積分得答案.

解答 解:由題意可得,
物體在t=1和t=3這段時(shí)間內(nèi)的位移是S=${∫}_{1}^{3}$(3t2-2t+3)dt=(t3-t2+3t)|${\;}_{1}^{3}$=33-32+3×3-(1-1+3)=24,
故選:B.

點(diǎn)評(píng) 本題考查了定積分,關(guān)鍵是對(duì)題意的理解,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.若函數(shù)f(x)是定義在R上的函數(shù),f(x)關(guān)于x=2對(duì)稱(chēng),且在區(qū)間[2,+∞)上是單調(diào)增函數(shù).如果實(shí)數(shù)t滿(mǎn)足f(lnt)+f(4-lnt)<f(1)+f(3)時(shí),那么t的取值范圍是e<t<e3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.“|a|=|b|”是“a=b”的( 。l件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.設(shè)函數(shù)f(x)=2x+3,g(x+2)=f(x),則g(2)的值是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知變量x、y滿(mǎn)足約束條件$\left\{{\begin{array}{l}{x-2≤0}\\{2x-y≥0}\\{x+y-3≥0}\end{array}}\right.$,則z=x+y的最大值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.在$\frac{8}{3}$和$\frac{27}{2}$之間插入三個(gè)數(shù),使這五個(gè)數(shù)成等比數(shù)列,則使插入三個(gè)數(shù)的積為( 。
A.36B.36或-36C.216D.216或-216

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.6本不同的書(shū),按照以下要求處理,各有幾種分法?
(1)甲得一本,乙得二本,丙得三本;
(2)平均分成三堆;
(3)甲、乙、丙每人至少得一本.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.設(shè)函數(shù)f(x)=x3+($\frac{m}{2}$+2)x2-2x,(x>0),若對(duì)于任意的t∈[1,2],函數(shù)f(x)在區(qū)間(t,3)上總不是單調(diào)函數(shù),則m的取值范圍是為$(-\frac{37}{3},-9)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.以直角坐標(biāo)原點(diǎn)為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系,已知直線(xiàn)l的極坐標(biāo)方程為:ρcos(θ-$\frac{π}{4}$)=2$\sqrt{2}$.曲線(xiàn)C的參數(shù)方程為:$\left\{\begin{array}{l}x=1+3cosα\\ y=3sinα\end{array}\right.$(α為參數(shù)).
(1)求直線(xiàn)l的直角坐標(biāo)方程與曲線(xiàn)C的普通方程;
(2)已知直線(xiàn)l與曲線(xiàn)C相交于A、B兩點(diǎn),求|AB|的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案