已知向量
a
=(3,4),
b
=(x,1)且(
a
+
b
b
=|
a
|,則實(shí)數(shù)x的值為
 
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:計(jì)算題,平面向量及應(yīng)用
分析:運(yùn)用向量的數(shù)量積的坐標(biāo)表示和向量模的公式,及向量的平方即為模的平方,解方程即可得到.
解答: 解:向量
a
=(3,4),
b
=(x,1)
a
b
=3x+4,|
a
|=5,|
b
|=
1+x2
,
由(
a
+
b
b
=|
a
|,
可得
a
b
+
b
2
=|
a
|,
即3x+4+1+x2=5,
解得x=0或-3,
故答案為:0或-3.
點(diǎn)評(píng):本題考查向量的數(shù)量積的坐標(biāo)表示和向量的模的公式,考查運(yùn)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=log 
1
3
(4-x2)的單調(diào)遞減區(qū)間是( 。
A、(-2,0)
B、(0,2)
C、(-∞,-2)
D、(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=1,|
b
|=2,|
a
+
b
|=
3
,則
a
b
的夾角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在矩形ABCD中,AD=1,AB=2,點(diǎn)E是線段AB的中點(diǎn),把三角形AED沿DE折起,設(shè)折起后點(diǎn)A的位置為 P,F(xiàn)是PD的中點(diǎn).
(1)求證:無論P(yáng)在什么位置,都有 AF∥平面 PEC;(2)當(dāng)點(diǎn)P在平面ABCD上的射影落在線段DE上時(shí),若三棱錐P-ECD的四個(gè)頂點(diǎn)都在一個(gè)球上,求這個(gè)球的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln(x+a)-x2-x(a∈R)在x=0處取得極值.
(1)求實(shí)數(shù)a的值;
(2)證明:ln(x+1)≤x2+x;
(3)若關(guān)于x的方程f(x)=-
5
2
x+b在區(qū)間[0,2]上恰有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若2x+3y+4z=11,則x2+y2+z2的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=log 
1
2
(x2-3x+2)的單調(diào)遞增區(qū)間為( 。
A、(-∞,1)
B、(-∞,
3
2
]
C、[
3
2
,+∞)
D、(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={a1,a2,a3,..,an,}其中ai∈R(1≤i≤n,n>2),f(A)表示和ai+aj(1≤i<j≤n)中所有不同值的個(gè)數(shù).若集合A={2,4,8,…,2n}.
(1)當(dāng)n=4時(shí),f(A)=
 
;
(2)當(dāng)n∈N*且n≥2時(shí),歸納出f(A)關(guān)于n的解析式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l1:y=kx+1與圓心C:x2+y2+kx-y-4=0的兩個(gè)交點(diǎn)關(guān)于直線l2:x+y=0對(duì)稱,則這樣的兩個(gè)點(diǎn)的坐標(biāo)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案