8.已知非零向量$\overrightarrow a,\overrightarrow b$的夾角為60°,且$,|{\overrightarrow b}|=2|{\overrightarrow a}|=2$,若向量$λ\overrightarrow a-\overrightarrow b$與$\overrightarrow a+2\overrightarrow b$互相垂直,則實數(shù)λ=3.

分析 由向量垂直數(shù)量積為0,利用題設(shè)條件,能求出λ的值.

解答 解:∵向量$λ\overrightarrow a-\overrightarrow b$與$\overrightarrow a+2\overrightarrow b$互相垂直,
∴($λ\overrightarrow a-\overrightarrow b$)($\overrightarrow a+2\overrightarrow b$)=0,即λ${\overrightarrow{a}}^{2}$+(2λ-1)$\overrightarrow{a}$•$\overrightarrow$-2${\overrightarrow}^{2}$=λ-8+(2λ-1)×1×2×$\frac{1}{2}$=0,
解得λ=3.
故答案是:3.

點評 本題考查向量的模的求法,考查向量垂直的條件的應(yīng)用,是基礎(chǔ)題,解題時要熟練掌握向量的數(shù)量積的運算.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)兩個獨立事件A和B都不發(fā)生的概率為$\frac{1}{9}$,A發(fā)生B不發(fā)生的概率與B發(fā)生A不發(fā)生的概率相同,則事件A發(fā)生的概率P(A)是$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知向量$\overrightarrow a=({-2,2})$,$\overrightarrow b=({5,m})$,且|$\overrightarrow a+\overrightarrow b|$不超過5,則函數(shù)f(x)=$\sqrt{3}$cosx-sinx+m有零點的概率是(  )
A.$\frac{3}{4}$B.$\frac{2}{3}$C.$\frac{3}{5}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在(0,2π)內(nèi),使得|sinx|>|cosx|成立的x的取值范圍是( 。
A.$(\frac{π}{4},\frac{π}{2})∪(π,\frac{5}{4}π)$B.$(\frac{π}{4},π)$C.$(\frac{π}{4},\frac{3}{4}π)∪(\frac{5π}{4},\frac{7}{4}π)$D.$(\frac{π}{4},\frac{π}{2})∪(\frac{5}{4}π,\frac{3}{2}π)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.10顆骰子同時擲出,共擲5次,至少有一次全部出現(xiàn)一個點的概率是(  )
A.${[{1-{{({\frac{5}{6}})}^{10}}}]^5}$B.${[{1-{{({\frac{5}{6}})}^6}}]^{10}}$C.1 $-{[{1-{{({\frac{1}{6}})}^5}}]^{10}}$D.1$-{[{1-{{({\frac{1}{6}})}^{10}}}]^5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.做一個體積為32m3,高為2m的長方體紙盒.
(1)若用x表示長方體底面一邊的長,S表示長方體的表面積,寫出S關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)x取什么值時,做一個這樣的長方體紙盒用紙最少?最少用紙多少m2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.?dāng)?shù)列-$\frac{1}{2}$,$\frac{1}{4}$,-$\frac{1}{8}$,$\frac{1}{16}$,…的一個通項公式是(  )
A.-$\frac{1}{{2}^{n}}$$\frac{(-1)^{n}}{{2}^{n}}$B.$\frac{(-1)^{n}}{{2}^{n}}$C.$\frac{(-1)^{n+1}}{{2}^{n}}$D.$\frac{(-1)^{n}}{{2}^{n-1}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若直線x+(2-a)y+1=0與圓x2+y2-2y=0相切,則a的值為(  )
A.1或-1B.2或-2C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如圖,已知點D為△ABC的邊BC上一點,$\overrightarrow{BD}$=3$\overrightarrow{DC}$,En(n∈N+)為邊AC的一列點,滿足$\overrightarrow{{E}_{n}A}$=$\frac{1}{4}$an+1$\overrightarrow{{E}_{n}B}$-(3an+2)$\overrightarrow{{E}_{n}D}$,其中實數(shù)列{an}中an>0,a1=1,則{an}的通項公式為( 。
A.3•2n-1-2B.2n-1C.3n-2D.2•3n-1-1

查看答案和解析>>

同步練習(xí)冊答案