已知函數(shù)f(x)=x+
a
x
在區(qū)間[2,+∞)上是增函數(shù),則實(shí)數(shù)a的取值范圍是
 
考點(diǎn):函數(shù)單調(diào)性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:當(dāng)a≤0時(shí),函數(shù)函數(shù)f(x)=x+
a
x
在R上是增函數(shù),滿足條件.當(dāng)a>0 時(shí),由題意可得
a
≤2,求得a的范圍,再把A的范圍取并集,即得所求.
解答: 解:當(dāng)a≤0時(shí),函數(shù)函數(shù)f(x)=x+
a
x
在R上是增函數(shù),滿足條件.
當(dāng)a>0 時(shí),∵x∈[2,+∞)時(shí),x2≥4,由 f′(x)=1-
a
x2
≥0,即a≤x2,可得0<a≤4.
綜上可得,a≤4,
故答案為:{a|a≤4}.
點(diǎn)評(píng):本題主要考查函數(shù)的單調(diào)性,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)的定義域?yàn)閇a,b],b>-a>0,f(-x)的定義域?yàn)?div id="y6kfeh5" class='quizPutTag' contenteditable='true'> 
,f(x)-f(-x)的定義域?yàn)?div id="ndzw57s" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xOy中 已知橢圓C:
x2
4
+
y2
3
=1上一點(diǎn)P(1,
3
2
),過(guò)點(diǎn)P的直線l1,l2與橢圓C分別交于點(diǎn)A、B,且他們的斜率k1,k2滿足k1.k2=-
3
4
,求證:
(1)直線AB過(guò)定點(diǎn);
(2)求△PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=ax2+bx且f(2)=0,方程f(x)-1=0有兩個(gè)相等的實(shí)數(shù)根.
(1)求函數(shù)f(x)的解析式;
(2)用定義證明f(x)在[1,+∞)上是減函數(shù);
(3)當(dāng)x∈[-
1
2
,
3
2
]時(shí),利用圖象求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}前n項(xiàng)和Sn=n2+2n-2,對(duì)數(shù)列{an}的描述正確的是( 。
A、數(shù)列{an}為遞增數(shù)列
B、數(shù)列{an}為遞減數(shù)列
C、數(shù)列{an}為等差數(shù)列
D、數(shù)列{an}為等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

作出y=
1
x
+2的函數(shù)圖象,并求出其單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)F1,F(xiàn)2是雙曲線x2-
y2
4
=1的左、右兩個(gè)焦點(diǎn),若雙曲線右支上存在一點(diǎn)P,是PF1⊥PF2,且|PF1|=λ|PF2|,則λ的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a=1,b=2,cosC=
1
2
,則c=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)α、β為空間任意兩個(gè)不重合的平面,則:
①必存在直線l與兩平面α、β均平行;    
②必存在直線l與兩平面α、β均垂直;
③必存在平面γ與兩平面α、β均平行;    
④必存在平面γ與兩平面α、β均垂直.
其中正確的是
 
.(填寫正確命題序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案