設(shè)α、β為空間任意兩個不重合的平面,則:
①必存在直線l與兩平面α、β均平行;    
②必存在直線l與兩平面α、β均垂直;
③必存在平面γ與兩平面α、β均平行;    
④必存在平面γ與兩平面α、β均垂直.
其中正確的是
 
.(填寫正確命題序號)
考點:空間中直線與直線之間的位置關(guān)系
專題:空間位置關(guān)系與距離
分析:當(dāng)兩平面相交時,不存在直線與它們均垂直,也不存在平面與它們均平行(否則兩平面平行).
解答: 解:設(shè)α、β為空間任意兩個不重合的平面,則:
①當(dāng)兩平面相交時,必有一條直線與兩平面均平行,
當(dāng)兩平面平行時,必有一條直線與兩平面均平行,
故必存在直線l與兩平面α、β均平行,故①正確;    
②當(dāng)兩平面平行時,不存在直線l與兩平面α、β均垂直,故②錯誤;
③當(dāng)兩平面相交時,不存在平面γ與兩平面α、β均平行,故③錯誤;    
④當(dāng)兩平面相交時,必存在平面γ與兩平面α、β均垂直,
當(dāng)兩平面平行時,必存在平面γ與兩平面α、β均垂直,故④正確.
故答案為:①④.
點評:本題考查命題真假的判斷,解題時要注意學(xué)生空間線面,面面位置關(guān)系及空間想象能力的培養(yǎng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+
a
x
在區(qū)間[2,+∞)上是增函數(shù),則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對定義域為D的函數(shù),若存在距離為d的兩條平行直線l1:y=kx+m1和l2:y=kx+m2,使得當(dāng)x∈D時,kx+m1≤f(x)≤kx+m2恒成立,則稱函數(shù)f(x)在x∈D有一個寬度為d的通道.有下列函數(shù):
①f(x)=
1
x
;②f(x)=sinx;③f(x)=
x2-1
;④f(x)=x3+1.
其中在[1,+∞)上通道寬度為(x2-
1
x
)5
的函數(shù)是( 。
A、①③B、②③C、②④D、①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

x2
a2
+
y2
b2
=1與x2+y2=(
b
2
+c)2總有四個交點,求離心率e的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若角α的終邊在直線y=2x上,則
2sinα-cosα
sinα+2cosα
的值為( 。
A、0
B、
3
4
C、1
D、
5
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,已知點A(1,1),B(2,3),C(3,2),點P(x,y)在△ABC三邊圍成的
區(qū)域(含邊界)上,若
PA
+
PB
+
PC
=
0
,求|
OP
|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x-1
x+1

(1)寫出函數(shù)的對稱中心;
(2)求函數(shù)f(
x
)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex,g(x)=ax2+bx+1(a,b∈R).
(Ⅰ)當(dāng)a≠0時,若曲線y=f(x)與y=g(x)在x=0出有相同的切線,求b的值;
(Ⅱ)當(dāng)a=0時,若f(x)≥g(x)對任意的x∈R恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在某一試驗中事件A出現(xiàn)的概率為p,則在n次試驗中
.
A
出現(xiàn)k次的概率為(  )
A、1-pk
B、(1-p)kpn-k
C、1-(1-p)k
D、
C
k
n
(1-p)kpn-k

查看答案和解析>>

同步練習(xí)冊答案