分析 先利用f(2x)=2f(x),求出f(34)的值,再根據f(x)=1-|x-3|,求出f(x)=f(34)時x的最小值.
解答 解:根據題意,得;
∵f(2x)=2f(x),
∴f(34)=2f(17)
=4f($\frac{17}{2}$)=8f($\frac{17}{4}$)
=16f($\frac{17}{8}$);
又∵當2≤x≤4時,f(x)=1-|x-3|,
∴f($\frac{17}{8}$)=1-|$\frac{17}{8}$-3|=$\frac{1}{8}$,
∴f(2x)=16×$\frac{1}{8}$=2;
當2≤x≤4時,f(x)=1-|x-3|≤1,不存在;
當4≤x≤8時,f(x)=2f($\frac{x}{2}$)=2[1-|$\frac{x}{2}$-3|]=2,
解得x=6;
故答案為:6.
點評 本題考查了根據函數的解析式求函數值以及根據函數值求對應自變量的最小值的應用問題,是基礎題目.
科目:高中數學 來源: 題型:選擇題
A. | ?x∈R,2x>0 | B. | ?a∈(0,1),log${\;}_{\frac{1}{2}}$a>0 | ||
C. | ?x∈(0,1),x${\;}^{\frac{3}{2}}$<1 | D. | ?α∈(0,$\frac{π}{4}$),sinα+cosα=$\sqrt{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 6 | B. | $\frac{20}{3}$ | C. | $\frac{16}{3}$ | D. | $\frac{19}{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | [-$\frac{5}{2}$,$\frac{5}{2}$] | B. | (-∞,-$\frac{5}{2}$]∪[$\frac{5}{2}$,+∞) | C. | [-4,6] | D. | (-∞,-4]∪[6,+∞) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com