A. | 等腰直角三角形 | B. | 直角三角形 | C. | 等腰三角形 | D. | 等邊三角形 |
分析 由三角函數(shù)公式化簡可得cos(A-B)=1,結(jié)合三角形角的范圍可得.
解答 解:∵在△ABC中cosAcosB=-cos2$\frac{C}{2}$+1,
∴cosAcosB=-$\frac{1+cosC}{2}$+1=-$\frac{1}{2}$cosC+$\frac{1}{2}$,
∴2cosAcosB=-cosC+1=cos(A+B)+1,
∴2cosAcosB=cosAcosB-sinAsinB+1,
∴cosAcosB+sinAsinB=1,
∴cos(A-B)=1,∴A-B=0,即A=B,
∴△ABC一定是等腰三角形
故選:C.
點評 本題考查兩角和與差的三角函數(shù),涉及三角形形狀的判定,屬基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -4 | B. | 3 | C. | -2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{6}$ | B. | $\sqrt{5}$ | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com