13.在四面體ABCD中,AB=CD=6,AC=BD=4,AD=BC=5,則四面體ABCD的外接球的表面積為$\frac{77π}{2}$.

分析 由題意可采用割補法,考慮到四面體ABCD的四個面為全等的三角形,所以可在其每個面補上一個以6,4,5為三邊的三角形作為底面,且以分別為x,y,z,長、兩兩垂直的側(cè)棱的三棱錐,從而可得到一個長、寬、高分別為x,y,z的長方體,由此能求出球的半徑,進而求出球的表面積.

解答 解:由題意可采用割補法,考慮到四面體ABCD的四個面為全等的三角形,
所以可在其每個面補上一個以6,4,5為三邊的三角形作為底面,
且以分別為x,y,z,長、兩兩垂直的側(cè)棱的三棱錐,
從而可得到一個長、寬、高分別為x,y,z的長方體,
并且x2+y2=36,x2+z2=16,y2+z2=25,
設(shè)球半徑為R,則有(2R)2=x2+y2+z2=$\frac{77}{2}$,
∴4R2=$\frac{77}{2}$,
∴球的表面積為S=4πR2=$\frac{77π}{2}$.
故答案為:$\frac{77π}{2}$.

點評 本題考查球的表面積的求法,是中檔題,解題時要認(rèn)真審題,注意構(gòu)造法的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若角α終邊所在的直線經(jīng)過點$P(cos\frac{3π}{4},sin\frac{3π}{4})$,O為坐標(biāo)原點,則|OP|=1,$cos({\frac{π}{2}+α})$=$-\frac{{\sqrt{2}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)f(x)=e2x的圖象上的點到直線2x-y-4=0的距離的最小值是$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知|$\overrightarrow{AB}$|=3,|$\overrightarrow{AC}$|=3,$\overrightarrow{AB}$與$\overrightarrow{AC}$的夾角為50°,則$\overrightarrow{AB}$與($\overrightarrow{AB}$-$\overrightarrow{AC}$)的夾角大小為65°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在△ABC中,若cosAcosB=-cos2$\frac{C}{2}$+1,則△ABC一定是( 。
A.等腰直角三角形B.直角三角形C.等腰三角形D.等邊三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知f(x)在R上是奇函數(shù)且滿足f(x+4)=f(x),若x∈(0,2)時,f(x)=2x2,則f(11)的值為( 。
A.-2B.2C.-98D.98

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在數(shù)列{an}中a1=1,且an=$\frac{n-1}{n+1}$an-1(n≥2),求αn與sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.△ABC中,A=45°,$\frac{a}$=$\sqrt{2}$,則B=30°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若底面為正三角形的幾何體的三視圖如圖所示,則幾何體的側(cè)面積為(  )
A.$12\sqrt{3}$B.$36\sqrt{3}$C.$27\sqrt{3}$D.72

查看答案和解析>>

同步練習(xí)冊答案