函數(shù)f(x)=
log2x+a,x>0
2x+a,x≤0
,若y=f(x)+x有且只有一個(gè)零點(diǎn),則a的取值范圍是
 
考點(diǎn):函數(shù)的零點(diǎn)與方程根的關(guān)系
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:化簡(jiǎn)構(gòu)造得出g(x)=
log2x+x,x>0
2x+x,x≤0
與y=-a有且只有一個(gè)交點(diǎn),利用函數(shù)的圖象的交點(diǎn)求解即可.
解答: 解:∵函數(shù)f(x)=
log2x+a,x>0
2x+a,x≤0
,若y=f(x)+x有且只有一個(gè)零點(diǎn),
∴g(x)=
log2x+x,x>0
2x+x,x≤0
與y=-a有且只有一個(gè)交點(diǎn),
根據(jù)圖形得出:-a>1,
∴a<-1
故答案為:a<-1.
點(diǎn)評(píng):本題考查了函數(shù)的性質(zhì),圖象的運(yùn)用,利用函數(shù)的交點(diǎn)問(wèn)題解決函數(shù)零點(diǎn)問(wèn)題,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求橢圓
x2
9
+
y2
4
=1的長(zhǎng)軸長(zhǎng)、短軸長(zhǎng)、焦點(diǎn)坐標(biāo)、頂點(diǎn)坐標(biāo)及離心率,并用描點(diǎn)法畫出該橢圓的圖形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知p:x2-x≥2,q:|x-2|≤1,且“p∧q”與“¬q”同時(shí)為假命題,則實(shí)數(shù)x的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=
1
3
x3-f′(-1)•x2+x+5,則f′(-1)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=xln(ax)(a>0)
(Ⅰ)設(shè)F(x)=
1
2
f(1)x 
2+f'(x),討論函數(shù)F(x)的單調(diào)性;
(Ⅱ)過(guò)兩點(diǎn)A(x1,f′(x1)),B(x2f′(x2))(x1<x2)的直線的斜率為k,求證:
1
x2
<k<
1
x1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若f(x)是以2為周期的奇函數(shù)且當(dāng)x∈(0,1)時(shí),f(x)=2x+1,求f(
7
2
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)當(dāng)x>0時(shí)有意義,并且滿足下列條件:
①f(2)=1; ②f(x•y)=f(x)+f(y); ③當(dāng)x>1時(shí),f(x)>0,
(Ⅰ) 求f(1)、f(
1
2
)的值;
(Ⅱ) 證明f(x)在(0,+∞)上是增函數(shù);
(Ⅲ)解不等式f(3)+f(4-8x)>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c的圖象經(jīng)過(guò)點(diǎn)(-2,0),且不等式2x≤f(x)≤
1
2
x2+2對(duì)一切實(shí)數(shù)x都成立.
(1)求函數(shù)f(x)的解析式;
(2)若對(duì)一切實(shí)數(shù)x∈[-1,1],不等式f(x+1)<f(
t
2
)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果函數(shù)f(x)上存在兩個(gè)不同點(diǎn)A、B關(guān)于原點(diǎn)對(duì)稱,則稱A、B兩點(diǎn)為一對(duì)友好點(diǎn),記作(A,B),規(guī)定(A,B)和(B,A)是同一對(duì),已知f(x)=
|cosx|x≥0
-lg(-x)x<0
,則函數(shù)F(x)上共存在友好點(diǎn)( 。
A、1對(duì)B、3對(duì)C、5對(duì)D、7對(duì)

查看答案和解析>>

同步練習(xí)冊(cè)答案